cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A198409 Positions in sequences A198384, A198385 and A198386 to indicate triples of squares in arithmetic progression, that are not multiples of earlier triples.

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 15, 23, 24, 26, 30, 35, 39, 42, 45, 47, 51, 54, 62, 69, 70, 72, 83, 84, 88, 97, 98, 102, 107, 114, 115, 124, 126, 129, 136, 141, 142, 143, 156, 157, 167, 169, 172, 177, 181, 188, 191, 201, 205, 208, 214, 218, 229, 230, 237, 244, 249, 253
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

A198435(n) = A198384(a(n)); A198439(n) = A198388(a(n));
A198436(n) = A198385(a(n)); A198440(n) = A198389(a(n));
A198437(n) = A198386(a(n)); A198441(n) = A198390(a(n));
A198438(n) = A198387(a(n)).

Programs

  • Haskell
    import Data.List (elemIndices)
    a198409 n = a198409_list !! (n-1)
    a198409_list = map (+ 1) $ elemIndices 1 $ map a008966 $
       zipWith gcd a198384_list $ zipWith gcd a198385_list a198386_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    Position[tt, t_List /; SquareFreeQ[GCD@@t]] // Flatten (* Jean-François Alcover, Oct 24 2021 *)

Formula

A198441 Square root of third term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

7, 17, 23, 31, 41, 47, 49, 71, 73, 79, 89, 97, 103, 113, 119, 119, 127, 137, 151, 161, 161, 167, 191, 193, 199, 217, 217, 223, 233, 239, 241, 257, 263, 271, 281, 287, 287, 289, 311, 313, 329, 329, 337, 343, 353, 359, 367, 383, 391, 391, 401, 409, 431, 433
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

This sequence gives the sum of the two legs (catheti) x + y of primitive Pythagorean triangles (x,y,z) with y even and gcd(x,y) = 1, ordered nondecreasingly (with multiple entries). See A058529(n), n>=2, for the sequence without multiple entries. For the proof, put in the Zumkeller link w = x + y, v = z and u = abs(x - y). This works because w^2 - v^2 = v^2 - u^2, hence u^2 = 2*v^2 - w^2 = 2*z^2 - (x+y)^2 = 2*(x^2 + y^2) - (x+y)^2 = x^2 + y^2 - 2*x*y = (x-y)^2. The primitivity of the arithmetic progression triples follows from the one of the Pythagorean triples: gcd(u,w) = 1 follows from gcd(x,y) = 1, then gcd(u,v,w) = gcd(gcd(u,w),v) = 1. The converse can also be proved: given a primitive arithmetic progression triple (u,v,w), 1 <= u < v < w, gcd(u,v,w) = 1, the corresponding primitive Pythagorean triple with even y is ((w-u)/2,(w+u)/2,v) or ((w+u)/2,(w-u)/2,v), depending on whether (w+u)/2 is even or odd, respectively. - Wolfdieter Lang, May 22 2013
n appears A330174(n) times. - Ray Chandler, Feb 26 2020

Examples

			Primitive Pythagorean triangle connection: a(1) = 7 because (u,v,w) = (1,5,7) corresponds to the primitive Pythagorean triangle (x = (w-u)/2, y = (w+u)/2, z = v) = (3,4,5) with leg sum 3 + 4 = 7. - _Wolfdieter Lang_, May 23 2013
		

Crossrefs

Cf. A225949 (triangle version of leg sums).

Programs

  • Haskell
    a198441 n = a198441_list !! (n-1)
    a198441_list = map a198390 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]][[All, 3]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

A198437(n) = a(n)^2; a(n) = A198390(A198409(n)).

A198435 First term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384,A198385,A198386).

Original entry on oeis.org

1, 49, 49, 289, 1, 529, 961, 2401, 289, 2209, 529, 5041, 49, 1681, 1681, 6241, 9409, 49, 961, 5329, 16129, 14161, 7921, 289, 25921, 2209, 12769, 27889, 14161, 1, 39601, 2401, 5329, 10609, 25921, 49729, 58081, 529, 961, 10609, 7921, 36481, 82369, 22801, 47089
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a198435 n = a198435_list !! (n-1)
    a198435_list = map a198384 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD @@ t>1 && MemberQ[tt, t/GCD @@ t]][[All, 1]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

a(n) = A198439(n)^2 = A198384(A198409(n));
A198436(n) - a(n) = A198437(n) - A198436(n) = A198438(n).

A198436 Second term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

25, 169, 289, 625, 841, 1369, 1681, 3721, 2809, 4225, 4225, 7225, 5329, 7225, 7921, 10201, 12769, 9409, 11881, 15625, 21025, 21025, 22201, 18769, 32761, 24649, 29929, 38809, 34225, 28561, 48841, 34225, 37249, 42025, 52441, 66049, 70225, 42025, 48841, 54289
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a198436 n = a198436_list !! (n-1)
    a198436_list = map a198385 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD @@ t>1 && MemberQ[tt, t/GCD @@ t]][[All, 2]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

a(n) = A198440(n)^2 = A198385(A198409(n)).
a(n) - A198435(n) = A198437(n) - a(n) = A198438(n).

A198437 Third term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384,A198385,A198386).

Original entry on oeis.org

49, 289, 529, 961, 1681, 2209, 2401, 5041, 5329, 6241, 7921, 9409, 10609, 12769, 14161, 14161, 16129, 18769, 22801, 25921, 25921, 27889, 36481, 37249, 39601, 47089, 47089, 49729, 54289, 57121, 58081, 66049, 69169, 73441, 78961, 82369, 82369, 83521, 96721
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a198437 n = a198437_list !! (n-1)
    a198437_list = map a198386 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD @@ t>1 && MemberQ[tt, t/GCD @@ t]][[All, 3]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

a(n) = A198441(n)^2 = A198386(A198409(n));
a(n) - A198436(n) = A198436(n) - A198435(n) = A198438(n).

A198438 Common differences in triples of squares in arithmetic progression, that are not a multiples of other triples in (A198384, A198385, A198386).

Original entry on oeis.org

24, 120, 240, 336, 840, 840, 720, 1320, 2520, 2016, 3696, 2184, 5280, 5544, 6240, 3960, 3360, 9360, 10920, 10296, 4896, 6864, 14280, 18480, 6840, 22440, 17160, 10920, 20064, 28560, 9240, 31824, 31920, 31416, 26520, 16320, 12144, 41496, 47880, 43680, 50160
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Programs

  • Haskell
    a198438 n = a198438_list !! (n-1)
    a198438_list = map a198387 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    #[[2]] - #[[1]]& /@ DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

a(n) = A198387(A198409(n)) = A198436(n) - A198435(n) = A198437(n) - A198436(n).

A198439 Square root of first term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

1, 7, 7, 17, 1, 23, 31, 49, 17, 47, 23, 71, 7, 41, 41, 79, 97, 7, 31, 73, 127, 119, 89, 17, 161, 47, 113, 167, 119, 1, 199, 49, 73, 103, 161, 223, 241, 23, 31, 103, 89, 191, 287, 151, 217, 287, 137, 233, 71, 337, 79, 137, 17, 281, 359, 391, 49, 113, 119, 217
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

This sequence gives the values |x-y| of primitive Pythagorean triangles (x,y,z) with even y ordered according to the nondecreasing values of the leg sums x+y (called w in the Zumkeller link, and given in A198441). For the equivalence to primitive Pythagorean triples with even y see a comment in A198441. - Wolfdieter Lang, May 22 2013

Examples

			From _Wolfdieter Lang_, May 22 2013: (Start)
Primitive Pythagorean triple (x,y,z), y even, connection:
a(2) = 7 because the triple with second smallest leg sum x+y = 17 = A198441(2) is (5,12,13), and |x - y| = y - x = 12 - 5 = 7.
a(3) = 7 because x + y = A198441(3) = 23, (x,y,z) = (15,8,17) (the primitive triple with third smallest leg sum), and |x-y| = x - y = 15 - 8 = 7. (End)
		

Programs

  • Haskell
    a198439 n = a198439_list !! (n-1)
    a198439_list = map a198388 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD@@t>1 && MemberQ[tt, t/GCD@@t]][[All, 1]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

A198435(n) = a(n)^2; a(n) = A198388(A198409(n)).

A198440 Square root of second term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 61, 53, 65, 65, 85, 73, 85, 89, 101, 113, 97, 109, 125, 145, 145, 149, 137, 181, 157, 173, 197, 185, 169, 221, 185, 193, 205, 229, 257, 265, 205, 221, 233, 241, 269, 313, 265, 293, 325, 277, 317, 281, 365, 289, 305, 305, 365, 401
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

This sequence gives the hypotenuses of primitive Pythagorean triangles (with multiplicities) ordered according to nondecreasing values of the leg sums x+y (called w in the Zumkeller link, given by A198441). See the comment on the equivalence to primitive Pythagorean triangles in A198441. For the values of these hypotenuses ordered nondecreasingly see A020882. See also the triangle version A222946. - Wolfdieter Lang, May 23 2013

Examples

			From _Wolfdieter Lang_, May 22 2013: (Start)
Primitive Pythagorean triangle (x,y,z), even y, connection:
a(8) = 61 because the leg sum x+y = A198441(8) = 71 and due to A198439(8) = 49 one has y = (71+49)/2 = 60 is even, hence x = (71-49)/2 = 11 and z = sqrt(11^2 + 60^2) = 61. (End)
		

Crossrefs

Programs

  • Haskell
    a198440 n = a198440_list !! (n-1)
    a198440_list = map a198389 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]][[All, 2]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

A198436(n) = a(n)^2; a(n) = A198389(A198409(n)).

A001653 Numbers k such that 2*k^2 - 1 is a square.

Original entry on oeis.org

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149, 259717522849, 1513744654945, 8822750406821, 51422757785981, 299713796309065, 1746860020068409, 10181446324101389, 59341817924539925
Offset: 1

Views

Author

Keywords

Comments

Consider all Pythagorean triples (X,X+1,Z) ordered by increasing Z; sequence gives Z values.
The defining equation is X^2 + (X+1)^2 = Z^2, which when doubled gives 2Z^2 = (2X+1)^2 + 1. So the sequence gives Z's such that 2Z^2 = odd square + 1 (A069894).
(x,y) = (a(n), a(n+1)) are the solutions with x < y of x/(yz) + y/(xz) + z/(xy)=3 with z=2. - Floor van Lamoen, Nov 29 2001
Consequently the sum n^2*(2n^2 - 1) of the first n odd cubes (A002593) is also a square. - Lekraj Beedassy, Jun 05 2002
Numbers n such that 2*n^2 = ceiling(sqrt(2)*n*floor(sqrt(2)*n)). - Benoit Cloitre, May 10 2003
Also, number of domino tilings in S_5 X P_2n. - Ralf Stephan, Mar 30 2004. Here S_5 is the star graph on 5 vertices with the edges {1,2}, {1,3}, {1,4}, {1,5}.
If x is in the sequence then so is x*(8*x^2-3). - James R. Buddenhagen, Jan 13 2005
In general, Sum_{k=0..n} binomial(2n-k,k)j^(n-k) = (-1)^n*U(2n,i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,6), where L is defined as in A108299; see also A002315 for L(n,-6). - Reinhard Zumkeller, Jun 01 2005
Define a T-circle to be a first-quadrant circle with integral radius that is tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the T-circle with radius 1. Then for n >0, define C(n) to be the largest T-circle that intersects C(n-1). C(n) has radius a(n) and the coordinates of its points of intersection with C(n-1) are A001108(n) and A055997(n). Cf. A001109. - Charlie Marion, Sep 14 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5} which do not end in 0. - Tanya Khovanova, Jan 10 2007
The lower principal convergents to 2^(1/2), beginning with 1/1, 7/5, 41/29, 239/169, comprise a strictly increasing sequence; numerators = A002315 and denominators = {a(n)}. - Clark Kimberling, Aug 26 2008
Apparently Ljunggren shows that 169 is the last square term.
If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q+1) are perfect squares. If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q)/8 are perfect squares. If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X+1)^2 = Y^2 with p < r then s-r = p+q+1. - Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X + 1)^2 = Y^2 with p < r then r = 3p+2q+1 and s = 4p+3q+2. - Mohamed Bouhamida, Sep 02 2009
Equals INVERT transform of A005054: (1, 4, 20, 100, 500, 2500, ...) and INVERTi transform of A122074: (1, 6, 40, 268, 1796, ...). - Gary W. Adamson, Jul 22 2010
a(n) is the number of compositions of n when there are 5 types of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010
The remainder after division of a(n) by a(k) appears to belong to a periodic sequence: 1, 5, ..., a(k-1), 0, a(k)-a(k-1), ..., a(k)-1, a(k)-1, ..., a(k)-a(k-1), 0, a(k-1), ..., 5, 1. See Bouhamida's Sep 01 2009 comment. - Charlie Marion, May 02 2011
Apart from initial 1: subsequence of A198389, see also A198385. - Reinhard Zumkeller, Oct 25 2011
(a(n+1), 2*b(n+1)) and (a(n+2), 2*b(n+1)), n >= 0, with b(n):= A001109(n), give the (u(2*n), v(2*n)) and (u(2*n+1), v(2*n+1)) sequences, respectively, for Pythagorean triples (x,y,z), where x=|u^2-v^2|, y=2*u*v and z=u^2+v^2, with u odd and v even, which are generated from (u(0)=1, v(0)=2) by the substitution rule (u,v) -> (2*v+u,v) if u < v and (u,v) -> (u,2*u+v) if u > v. This leads to primitive triples because gcd(u,v) = 1 is respected. This corresponds to (primitive) Pythagorean triangles with |x-y|=1 (the catheti differ by one length unit). This (u,v) sequence starts with (1,2), (5,2), (5,12), (29,12), (29,70) ... - Wolfdieter Lang, Mar 06 2012
Area of the Fibonacci snowflake of order n. - José Luis Ramírez Ramírez, Dec 13 2012
Area of the 3-generalized Fibonacci snowflake of order n, n >= 3. - José Luis Ramírez Ramírez, Dec 13 2012
For the o.g.f. given by Johannes W. Meijer, Aug 01 2010, in the formula section see a comment under A077445. - Wolfdieter Lang, Jan 18 2013
Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 4 = 0. - Colin Barker, Feb 04 2014
Length of period of the continued fraction expansion of a(n)*sqrt(2) is 1, the corresponding repeating value is A077444(n). - Ralf Stephan, Feb 20 2014
Positive values of x (or y) satisfying x^2 - 34xy + y^2 + 144 = 0. - Colin Barker, Mar 04 2014
The value of the hypotenuse in each triple of the Tree of primitive Pythagorean triples (cf. Wikipedia link) starting with root (3,4,5) and recursively selecting the central branch at each triple node of the tree. - Stuart E Anderson, Feb 05 2015
Positive integers z such that z^2 is a centered square number (A001844). - Colin Barker, Feb 12 2015
The aerated sequence (b(n)) n >= 1 = [1, 0, 5, 0, 29, 0, 169, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. - Peter Bala, Mar 25 2015
A002315(n-1)/a(n) is the closest rational approximation of sqrt(2) with a denominator not larger than a(n). These rational approximations together with those obtained from the sequences A001541 and A001542 give a complete set of closest rational approximations of sqrt(2) with restricted numerator or denominator. A002315(n-1)/a(n) < sqrt(2). - A.H.M. Smeets, May 28 2017
Equivalently, numbers x such that (x-1)*x/2 + x*(x+1)/2 = y^2 + (y+1)^2. y-values are listed in A001652. Example: for x=29 and y=20, 28*29/2 + 29*30/2 = 20^2 + 21^2. - Bruno Berselli, Mar 19 2018
From Wolfdieter Lang, Jun 13 2018: (Start)
(a(n), a(n+1)), with a(0):= 1, give all proper positive solutions m1 = m1(n) and m2 = m2(n), with m1 < m2 and n >= 0, of the Markoff triple (m, m1, m2) (see A002559) for m = 2, i.e., m1^2 - 6*m1*m2 + m2^2 = -4. Hence the unique Markoff triple with largest value m = 2 is (1, 1, 2) (for general m from A002559 this is the famous uniqueness conjecture).
For X = m2 - m1 and Y = m2 this becomes the reduced indefinite quadratic form representation X^2 + 4*X*Y - 4*Y^2 = -4, with discriminant 32, and the only proper fundamental solution (X(0), Y(0)) = (0, 1). For all nonnegative proper (X(n), Y(n)) solutions see (A005319(n) = a(n+1) - a(n), a(n+1)), for n >= 0. (End)
Each Pell(2*k+1) = a(k+1) number with k >= 3 appears as largest number of an ordered Markoff (Markov) triple [x, y, m] with smallest value x = 2 as [2, Pell(2*k-1), Pell(2*k+1)]. This known result follows also from all positive proper solutions of the Pell equation q^2 - 2*m^2 = -1 which are q = q(k) = A002315(k) and m = m(k) = Pell(2*k+1), for k >= 0. y = y(k) = m(k) - 2*q(k) = Pell(2*k-1), with Pell(-1) = 1. The k = 0 and 1 cases do not satisfy x=2 <= y(k) <= m(k). The numbers 1 and 5 appear also as largest Markoff triple members because they are also Fibonacci numbers, and for these triples x=1. - Wolfdieter Lang, Jul 11 2018
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0 < a < b < c are given by a=A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=a(n+1), z=A002315(n) with 0 < n. - Michael Somos, Jun 26 2022

Examples

			From _Muniru A Asiru_, Mar 19 2018: (Start)
For k=1, 2*1^2 - 1 = 2 - 1 = 1 = 1^2.
For k=5, 2*5^2 - 1 = 50 - 1 = 49 = 7^2.
For k=29, 2*29^2 - 1 = 1682 - 1 = 1681 = 41^2.
... (End)
G.f. = x + 5*x^2 + 29*x^3 + 169*x^4 + 985*x^5 + 5741*x^6 + ... - _Michael Somos_, Jun 26 2022
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 188.
  • W. Ljunggren, "Zur Theorie der Gleichung x^2+1=Dy^4", Avh. Norske Vid. Akad. Oslo I. 5, 27pp.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 91.

Crossrefs

Other two sides are A001652, A046090.
Cf. A001519, A001109, A005054, A122074, A056220, A056869 (subset of primes).
Row 6 of array A094954.
Row 1 of array A188647.
Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,5];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Mar 19 2018
  • Haskell
    a001653 n = a001653_list !! n
    a001653_list = 1 : 5 : zipWith (-) (map (* 6) $ tail a001653_list) a001653_list
    -- Reinhard Zumkeller, May 07 2013
    
  • Magma
    I:=[1,5]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 22 2014
    
  • Maple
    a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
    A001653:=-(-1+5*z)/(z**2-6*z+1); # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation; gives sequence except for one of the leading 1's
  • Mathematica
    LinearRecurrence[{6,-1}, {1,5}, 40] (* Harvey P. Dale, Jul 12 2011 *)
    a[ n_] := -(-1)^n ChebyshevU[2 n - 2, I]; (* Michael Somos, Jul 22 2018 *)
    Numerator[{1} ~Join~
    Table[FromContinuedFraction[Flatten[Table[{1, 4}, n]]], {n, 1, 40}]]; (* Greg Dresden, Sep 10 2019 *)
  • PARI
    {a(n) = subst(poltchebi(n-1) + poltchebi(n), x, 3)/4}; /* Michael Somos, Nov 02 2002 */
    
  • PARI
    a(n)=([5,2;2,1]^(n-1))[1,1] \\ Lambert Klasen (lambert.klasen(AT)gmx.de), corrected by Eric Chen, Jun 14 2018
    
  • PARI
    {a(n) = -(-1)^n * polchebyshev(2*n-2, 2, I)}; /* Michael Somos, Jun 26 2022 */
    

Formula

G.f.: x*(1-x)/(1-6*x+x^2).
a(n) = 6*a(n-1) - a(n-2) with a(1)=1, a(2)=5.
4*a(n) = A077445(n).
Can be extended backwards by a(-n+1) = a(n).
a(n) = sqrt((A002315(n)^2 + 1)/2). [Inserted by N. J. A. Sloane, May 08 2000]
a(n+1) = S(n, 6)-S(n-1, 6), n>=0, with S(n, 6) = A001109(n+1), S(-2, 6) := -1. S(n, x)=U(n, x/2) are Chebyshev's polynomials of the second kind. Cf. triangle A049310. a(n+1) = T(2*n+1, sqrt(2))/sqrt(2), n>=0, with T(n, x) Chebyshev's polynomials of the first kind. [Offset corrected by Wolfdieter Lang, Mar 06 2012]
a(n) = A000129(2n+1). - Ira M. Gessel, Sep 27 2002
a(n) ~ (1/4)*sqrt(2)*(sqrt(2) + 1)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n) = (((3 + 2*sqrt(2))^(n+1) - (3 - 2*sqrt(2))^(n+1)) - ((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n)) / (4*sqrt(2)). Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 12 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 4) = a(n). - Benoit Cloitre, Nov 10 2002
For n and j >= 1, Sum_{k=0..j} a(k)*a(n) - Sum_{k=0..j-1} a(k)*a(n-1) = A001109(j+1)*a(n) - A001109(j)*a(n-1) = a(n+j); e.g., (1+5+29)*5 - (1+5)*1=169. - Charlie Marion, Jul 07 2003
From Charlie Marion, Jul 16 2003: (Start)
For n >= k >= 0, a(n)^2 = a(n+k)*a(n-k) - A084703(k)^2; e.g., 169^2 = 5741*5 - 144.
For n > 0, a(n) ^2 - a(n-1)^2 = 4*Sum_{k=0..2*n-1} a(k) = 4*A001109(2n); e.g., 985^2 - 169^2 = 4*(1 + 5 + 29 + ... + 195025) = 4*235416.
Sum_{k=0..n} ((-1)^(n-k)*a(k)) = A079291(n+1); e.g., -1 + 5 - 29 + 169 = 144.
A001652(n) + A046090(n) - a(n) = A001542(n); e.g., 119 + 120 - 169 = 70.
(End)
Sum_{k=0...n} ((2k+1)*a(n-k)) = A001333(n+1)^2 - (1 + (-1)^(n+1))/2; e.g., 1*169 + 3*29 + 5*5 + 7*1 = 288 = 17^2 - 1; 1*29 + 3*5 + 5*1 = 49 = 7^2. - Charlie Marion, Jul 18 2003
Sum_{k=0...n} a(k)*a(n) = Sum_{k=0..n} a(2k) and Sum_{k=0..n} a(k)*a(n+1) = Sum_{k=0..n} a(2k+1); e.g., (1+5+29)*29 = 1+29+985 and (1+5+29)*169 = 5+169+5741. - Charlie Marion, Sep 22 2003
For n >= 3, a_{n} = 7(a_{n-1} - a_{n-2}) + a_{n-3}, with a_1 = 1, a_2 = 5 and a_3 = 29. a(n) = ((-1+2^(1/2))/2^(3/2))*(3 - 2^(3/2))^n + ((1+2^(1/2))/2^(3/2))*(3 + 2^(3/2))^n. - Antonio Alberto Olivares, Oct 13 2003
Let a(n) = A001652(n), b(n) = A046090(n) and c(n) = this sequence. Then for k > j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n < 0, a(n) = -b(-n-1). Also a(n)*a(n+2k+1) + b(n)*b(n+2k+1) + c(n)*c(n+2k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2k) + b(n)*b(n+2k) + c(n)*c(n+2k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
Let a(n) = A001652(n), b(n) = A046090(n) and c(n) = this sequence. Then for n > 0, a(n)*b(n)*c(n)/(a(n)+b(n)+c(n)) = Sum_{k=0..n} c(2*k+1); e.g., 20*21*29/(20+21+29) = 5+169 = 174; a(n)*b(n)*c(n)/(a(n-1)+b(n-1)+c(n-1)) = Sum_{k=0..n} c(2*k); e.g., 119*120*169/(20+21+29) = 1+29+985+33461 = 34476. - Charlie Marion, Dec 01 2003
Also solutions x > 0 of the equation floor(x*r*floor(x/r))==floor(x/r*floor(x*r)) where r=1+sqrt(2). - Benoit Cloitre, Feb 15 2004
a(n)*a(n+3) = 24 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
For n >= k, a(n)*a(n+2*k+1) - a(n+k)*a(n+k+1) = a(k)^2-1; e.g., 29*195025-985*5741 = 840 = 29^2-1; 1*169-5*29 = 24 = 5^2-1; a(n)*a(n+2*k)-a(n+k)^2 = A001542(k)^2; e.g., 169*195025-5741^2 = 144 = 12^2; 1*29-5^2 = 4 = 2^2. - Charlie Marion Jun 02 2004
For all k, a(n) is a factor of a((2n+1)*k+n). a((2*n+1)*k+n) = a(n)*(Sum_{j=0..k-1} (-1)^j*(a((2*n+1)*(k-j)) + a((2*n+1)*(k-j)-1))+(-1)^k); e.g., 195025 = 5*(33461+5741-169-29+1); 7645370045 = 169*(6625109+1136689-1).- Charlie Marion, Jun 04 2004
a(n) = Sum_{k=0..n} binomial(n+k, 2*k)4^k. - Paul Barry, Aug 30 2004 [offset 0]
a(n) = Sum_{k=0..n} binomial(2*n+1, 2*k+1)*2^k. - Paul Barry, Sep 30 2004 [offset 0]
For n < k, a(n)*A001541(k) = A011900(n+k)+A053141(k-n-1); e.g., 5*99 = 495 = 493+2. For n >= k, a(n)*A001541(k) = A011900(n+k)+A053141(n-k); e.g., 29*3 = 87 = 85+2. - Charlie Marion, Oct 18 2004
a(n) = (-1)^n*U(2*n, i*sqrt(4)/2) = (-1)^n*U(2*n, i), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005 [offset 0]
a(n) = Pell(2*n+1) = Pell(n)^2 + Pell(n+1)^2. - Paul Barry, Jul 18 2005 [offset 0]
a(n)*a(n+k) = A000129(k)^2 + A000129(2n+k+1)^2; e.g., 29*5741 = 12^2+169^2. - Charlie Marion, Aug 02 2005
Let a(n)*a(n+k) = x. Then 2*x^2-A001541(k)*x+A001109(k)^2 = A001109(2*n+k+1)^2; e.g., let x=29*985; then 2x^2-17x+6^2 = 40391^2; cf. A076218. - Charlie Marion, Aug 02 2005
With a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = (a^((2n+1)/2)+b^((2n+1)/2))/(2*sqrt(2)). a(n) = A001109(n+1)-A001109(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
If k is in the sequence, then the next term is floor(k*(3+2*sqrt(2))). - Lekraj Beedassy, Jul 19 2005
a(n) = Jacobi_P(n,-1/2,1/2,3)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006 [offset 0]
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*Pell(n-j+1), where Pell = A000129. - Paul Barry, May 19 2006 [offset 0]
a(n) = round(sqrt(A002315(n)^2/2)). - Lekraj Beedassy, Jul 15 2006
a(n) = A079291(n) + A079291(n+1). - Lekraj Beedassy, Aug 14 2006
a(n+1) = 3*a(n) + sqrt(8*a(n)^2-4), a(1)=1. - Richard Choulet, Sep 18 2007
6*a(n)*a(n+1) = a(n)^2+a(n+1)^2+4; e.g., 6*5*29 = 29^2+5^2+4; 6*169*985 = 169^2+985^2+4. - Charlie Marion, Oct 07 2007
2*A001541(k)*a(n)*a(n+k) = a(n)^2+a(n+k)^2+A001542(k)^2; e.g., 2*3*5*29 = 5^2+29^2+2^2; 2*99*29*5741 = 2*99*29*5741=29^2+5741^2+70^2. - Charlie Marion, Oct 12 2007
[a(n), A001109(n)] = [1,4; 1,5]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
From Charlie Marion, Apr 10 2009: (Start)
In general, for n >= k, a(n+k) = 2*A001541(k)*a(n)-a(n-k);
e.g., a(n+0) = 2*1*a(n)-a(n); a(n+1) = 6*a(n)-a(n-1); a(6+0) = 33461 = 2*33461-33461; a(5+1) = 33461 = 6*5741-985; a(4+2) = 33461 = 34*985-29; a(3+3) = 33461 = 198*169-1.
(End)
G.f.: sqrt(x)*tan(4*arctan(sqrt(x)))/4. - Johannes W. Meijer, Aug 01 2010
Given k = (sqrt(2)+1)^2 = 3+2*sqrt(2) and a(0)=1, then a(n) = a(n-1)*k-((k-1)/(k^n)). - Charles L. Hohn, Mar 06 2011
Given k = (sqrt(2)+1)^2 = 3+2*sqrt(2) and a(0)=1, then a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(n) - a(n-1). - Charles L. Hohn, Apr 04 2011
Let T(n) be the n-th triangular number; then, for n > 0, T(a(n)) + A001109(n-1) = A046090(n)^2. See also A046090. - Charlie Marion, Apr 25 2011
For k > 0, a(n+2*k-1) - a(n) = 4*A001109(n+k-1)*A002315(k-1); a(n+2*k) - a(n) = 4*A001109(k)*A002315(n+k-1). - Charlie Marion, Jan 06 2012
a(k+j+1) = (A001541(k)*A001541(j) + A002315(k)*A002315(j))/2. - Charlie Marion, Jun 25 2012
a(n)^2 = 2*A182435(n)*(A182435(n)-1)+1. - Bruno Berselli, Oct 23 2012
a(n) = A143608(n-1)*A143608(n) + 1 = A182190(n-1)+1. - Charlie Marion, Dec 11 2012
G.f.: G(0)*(1-x)/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
a(n+1) = 4*A001652(n) + 3*a(n) + 2 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
a(n)^2 = A001652(n-1)^2 + (A001652(n-1)+1)^2. - Hermann Stamm-Wilbrandt, Aug 31 2014
Sum_{n >= 2} 1/( a(n) - 1/a(n) ) = 1/4. - Peter Bala, Mar 25 2015
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n-k) * 2^k * 2^floor(k/2). - David Pasino, Jul 09 2016
E.g.f.: (sqrt(2)*sinh(2*sqrt(2)*x) + 2*cosh(2*sqrt(2)*x))*exp(3*x)/2. - Ilya Gutkovskiy, Jul 09 2016
a(n+2) = (a(n+1)^2 + 4)/a(n). - Vladimir M. Zarubin, Sep 06 2016
a(n) = 2*A053141(n)+1. - R. J. Mathar, Aug 16 2019
For n>1, a(n) is the numerator of the continued fraction [1,4,1,4,...,1,4] with (n-1) repetitions of 1,4. For the denominators see A005319. - Greg Dresden, Sep 10 2019
a(n) = round(((2+sqrt(2))*(3+2*sqrt(2))^(n-1))/4). - Paul Weisenhorn, May 23 2020
a(n+1) = Sum_{k >= n} binomial(2*k,2*n)*(1/2)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n+1) = 3*a(n) + A077444(n). - César Aguilera, Jul 13 2023

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000
Better description from Harvey P. Dale, Jan 15 2002
Edited by N. J. A. Sloane, Nov 02 2002

A198384 First of a triple of squares in arithmetic progression.

Original entry on oeis.org

1, 4, 49, 9, 49, 16, 289, 196, 25, 1, 36, 196, 529, 49, 961, 441, 64, 1156, 81, 784, 441, 100, 2401, 289, 121, 2209, 4, 144, 1225, 529, 169, 784, 2601, 2116, 5041, 196, 3844, 1764, 49, 225, 256, 1681, 1225, 289, 1681, 2401, 6241, 9, 4624, 324, 9409, 361
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Programs

  • Haskell
    a198384 n = a198384_list !! (n-1)
    a198384_list = map (^ 2) a198388_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 1]] (* Jean-François Alcover, Oct 19 2021 *)

Formula

a(n) = A198388(n)^2.
A198385(n) - a(n) = A198386(n) - A198385(n) = A198387(n).
A198435(n) = a(A198409(n)).

Extensions

Thanks to Benoit Jubin, who had the idea for sequences A198384 .. A198390 and A198435 .. A198441.
Showing 1-10 of 15 results. Next