A309440 The number of digits of the greatest product from addends that sum up to 10^n.
1, 2, 16, 160, 1591, 15905, 159041, 1590405, 15904042, 159040419, 1590404183, 15904041824, 159040418240, 1590404182399, 15904041823989, 159040418239888, 1590404182398875, 15904041823988748, 159040418239887480, 1590404182398874791, 15904041823988747910, 159040418239887479099
Offset: 0
Examples
The greatest product of numbers that sum up to 10 is 2*2*3*3 = 36 which has 2 digits. Thus a(1) = 2. The greatest product of numbers that sum up to 100 is 2*2*3^(32) ~ 7.4*10^15 which has 16 digits. Hence a(2) = 16. The greatest product of numbers that sum up to 1000 is 2*2*3^(332) ~ 1.0*10^159 which has 160 digits. Therefore a(3) = 160.
Crossrefs
Cf. A000792.
Programs
-
PARI
a(n) = 1 + floor(log(4)/log(10) + ((10^n-1)/3-1)*log(3)/log(10)); \\ Jinyuan Wang, Aug 03 2019
Formula
a(n) = 1 + floor(log_10(36) + 10*log_10(27)*R_(n-1)), R_k being the k-th repunit, i.e., 111...111 with only digit 1 appearing k times.
Comments