cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A263242 Larger of emirp pairs that are merely reversals of their end digits.

Original entry on oeis.org

31, 71, 73, 97, 311, 701, 733, 743, 751, 761, 907, 937, 941, 953, 967, 971, 983, 991, 3221, 9001, 9221, 9227, 9551, 9661, 9883, 32321, 33931, 34141, 34841, 35051, 36061, 36761, 37571, 39791, 70001, 71711, 72221, 73331, 74143, 74441, 74843, 74941, 75253, 76261, 76463, 76561
Offset: 1

Views

Author

Lekraj Beedassy, Oct 13 2015

Keywords

Comments

The first digit is always larger than the last digit.

Crossrefs

Programs

  • Mathematica
    epQ[n_]:=Module[{idn=IntegerDigits[n],mid},mid=Rest[Most[idn]];PrimeQ[ IntegerReverse[n]]&&mid==Reverse[mid]&&idn[[1]]>idn[[-1]]]; Select[ Prime[Range[6,8000]],epQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 10 2016 *)

Extensions

Corrected by Harvey P. Dale, Oct 10 2016

A263241 Lesser of emirp pairs that are merely reversals of their end digits.

Original entry on oeis.org

13, 17, 37, 79, 107, 113, 149, 157, 167, 179, 199, 337, 347, 359, 389, 709, 739, 769, 1009, 1223, 1229, 1559, 1669, 3889, 7229, 10007, 10009, 10909, 11717, 11719, 12227, 12323, 12829, 13337, 13933, 14143, 14447, 14449, 14549, 14843, 14947, 15053, 16063, 16267, 16567, 16763
Offset: 1

Views

Author

Lekraj Beedassy, Oct 13 2015

Keywords

Comments

The first digit is always smaller than last digit.

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], And @@ PrimeQ[{#, IntegerReverse[#]}] && ! PalindromeQ[#] && First[(d = IntegerDigits[#])] < Last[d] && PalindromeQ[Most@ Rest@ IntegerDigits[#]] &] (* Amiram Eldar, Oct 16 2021 *)
  • PARI
    isok(p) = my(dp=digits(p), dr=Vecrev(dp), r=fromdigits(dr)); if (isprime(r) && (r>p) && isprime(p), sum(i=2, #dp-1, dp[i]==dr[i]) == #dp-2); \\ Michel Marcus, Oct 16 2021

Extensions

Missing 179 added by Zak Seidov, Oct 15 2021
Showing 1-2 of 2 results.