cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Anders Hellström

Anders Hellström's wiki page.

Anders Hellström has authored 37 sequences. Here are the ten most recent ones:

A280532 a(1) = a(2) = 1, a(n) = A014777(a(n-1) + a(n-2)), n >= 3.

Original entry on oeis.org

1, 1, 6, 13, 37, 31, 605, 1411, 7174, 15567, 608953, 78903, 334535, 611552, 105928, 2557047, 2979162, 3263358, 6242520, 7825254, 37404834, 267494881, 639174488
Offset: 1

Author

Anders Hellström, Jan 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{a = {1, 1}, s = First@ RealDigits[N[Pi, 10^7]]}, Do[AppendTo[a, -1 + SequencePosition[s, IntegerDigits[ a[[n - 1]] + a[[n - 2]] ]][[1, 1]]], {n, 3, 20}]; a] (* Michael De Vlieger, Jan 14 2017 *)

A265131 Decimal expansion of positive x satisfying x^(x^x) = LambertW(1).

Original entry on oeis.org

4, 4, 3, 3, 4, 4, 8, 8, 7, 3, 5, 7, 9, 1, 5, 0, 7, 4, 1, 5, 9, 8, 0, 0, 2, 7, 9, 3, 7, 8, 8, 6, 8, 8, 6, 0, 1, 2, 2, 5, 4, 1, 3, 9, 6, 5, 2, 2, 2, 2, 9, 2, 1, 4, 9, 5, 7, 7, 1, 3, 5, 9, 5, 4, 0, 8, 8, 4, 9, 4, 5, 4, 8, 8, 1, 8, 6, 0, 0, 2, 4, 6, 5, 9, 7, 8, 8, 6, 7, 6, 8, 7, 9, 2, 2, 8, 4, 9, 2, 5, 1, 9, 9, 4, 1, 5, 3, 0, 0, 1, 1, 9, 8, 1
Offset: 0

Author

Anders Hellström, Dec 02 2015

Keywords

Examples

			0.44334488735791507415980027937886886012254139652223...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^(x^x)==ProductLog[1],{x,1},WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Jul 19 2020 *)
  • PARI
    default(realprecision,2000);solve(x=0.001,3,x^(x^x)-lambertw(1))

A265009 a(1)=3; for n>1, if n is odd a(n) = spf(Product_{k=1..n-1}(a(k))+1) else a(n) = spf(Product_{k=1..n-1}(a(k))-1), where spf is "smallest prime factor".

Original entry on oeis.org

3, 2, 7, 41, 1723, 5, 14835031, 220078129935929, 241, 23, 79, 101, 23291, 11, 223, 122386298896281959929015788890561251765109069, 38803, 17, 8209, 59, 199, 3340389589, 11527, 13, 47939, 1163, 599, 27198087874669514440553, 181936481, 31, 383, 9623, 739, 33287, 1061, 6493520653, 587, 709, 6548057, 1823, 361789, 20183
Offset: 1

Author

Anders Hellström, Nov 30 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 3; a[n_] := a[n] = FactorInteger[ Product[a[k], {k, n - 1}] + If[OddQ@ n, 1, -1]][[1, 1]]; Array[a, {16}] (* Michael De Vlieger, Nov 30 2015 *)
  • PARI
    spf(n)=my(f=factor(n)[1, 1]); f
    first(m)=my(v=vector(m)); v[1]=3; for(i=2, m,;v[i]=spf((-1)^(i+1)+prod(j=1, i-1, v[j]))); v

Extensions

a(20)-a(42) from Hans Havermann, Dec 06 2015

A264936 Decimal expansion of the positive root of x^(x^x) = gamma.

Original entry on oeis.org

4, 5, 5, 5, 5, 7, 0, 3, 6, 7, 0, 1, 9, 5, 8, 4, 2, 9, 0, 0, 4, 9, 5, 0, 0, 0, 4, 7, 0, 4, 0, 7, 0, 5, 7, 7, 0, 4, 9, 0, 3, 9, 3, 3, 9, 6, 9, 1, 2, 1, 7, 1, 7, 0, 6, 0, 7, 3, 0, 2, 3, 6, 0, 9, 6, 7, 6, 4, 2, 5, 3, 0, 9, 7, 2, 2, 4, 7, 6, 2, 2, 4, 4, 8, 9, 0, 0, 2, 5, 0, 1, 4, 0, 1, 0, 5, 0, 7, 7, 6, 8, 5, 3, 7, 8, 6
Offset: 0

Author

Anders Hellström, Nov 28 2015

Keywords

Examples

			0.4555570367019584290049500047040705770490...
		

Crossrefs

Cf. A001620.

Programs

  • Mathematica
    Take[RealDigits[x /. FindRoot[x^x^x == EulerGamma, {x, 1}, WorkingPrecision -> 120]][[1]], 100] (* G. C. Greubel, Sep 07 2018 *)
  • PARI
    default(realprecision,2000); solve(x=0.4,0.5,x^(x^x)-Euler)

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A264849 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 23-gonal: (21n^2 - 19n)/2.

Original entry on oeis.org

1, 30, 648, 6701456, 72020220595275, 970458695858595792221157266, 3377345920936319088412440649783459968197698452784332095, 7477788200541027929765479736500643733301085903714718188060185368351929896324223859775571543015918781111399506
Offset: 1

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 130, 130648 are 23-gonal.
		

Crossrefs

Programs

  • PARI
    icositrigonal(n)=ispolygonal(n, 23)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!icositrigonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 15 2018

A264848 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 19-gonal: (17n^2 - 15n)/2.

Original entry on oeis.org

1, 9, 224, 631909, 58000804596, 61688194098028272863216, 2514637794509678630513616176470588235294117671, 941048382372874985200592647058823529411764708485294117647058823529411764705882352941176469
Offset: 1

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 19, 19224, 19224631909 are 19-gonal.
		

Crossrefs

Programs

  • PARI
    enneadecagonal(n)=ispolygonal(n, 19)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!enneadecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 16 2018

A264842 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 13-gonal: (11n^2 - 9n)/2.

Original entry on oeis.org

1, 3, 36, 54765, 123152388, 374848814886363636, 85794018663817263665487289502938826, 107072047880615405294526336549204869795454545454545454545454545454545466
Offset: 1

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 13, 1336, 133654765 are 13-gonal.
		

Crossrefs

Programs

  • PARI
    tridecagonal(n)=ispolygonal(n, 13)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!tridecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

More terms from Jon E. Schoenfield, Nov 27 2015

A261696 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 17-gonal: (15n^2 - 13n)/2.

Original entry on oeis.org

1, 7, 689, 6797, 67984832, 6798483348333332, 8455610150480042707742277762479, 707328322040172689545426423113211907561874137758547957769721082
Offset: 1

Author

Anders Hellström, Nov 26 2015

Keywords

Comments

From Chai Wah Wu, Mar 16 2018: (Start)
There are some interesting patterns observed in the terms. Terms a(5), a(6), a(9), a(10), a(11), a(12), ... share the same prefix of 6798483...
From terms a(n) for n > 5, there seems to a pattern of how they are constructed from previous terms. a(6) is formed by inserting 3483...3 between the penultimate digit and the last digit of a(5). Then a(7) and (8) do not follow this pattern.
The digits of a(9) and a(6) match until the last digit of a(6). Next, a(10), a(11) and (12) are formed from a(9), a(10) and a(11) resp. by inserting 3483...3. Then this pattern is interrupted by a(13) and a(14), and continue again for a(15) ..., etc.
(End)

Examples

			1, 17, 17689, 176896797 are 17-gonal.
		

Crossrefs

Programs

  • PARI
    heptadecagonal(n)=ispolygonal(n, 17)
    first(m)=my(s=""); s="1"; print1(1, ", ");for(i=2, m, n=1; while(!heptadecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(6)-a(8) from Chai Wah Wu, Mar 16 2018

A264808 Decimal expansion of the positive root of x^(x^x) = e.

Original entry on oeis.org

1, 6, 0, 1, 0, 7, 5, 1, 5, 3, 9, 2, 3, 7, 2, 8, 7, 7, 9, 3, 2, 7, 0, 6, 4, 7, 6, 7, 7, 4, 7, 8, 3, 5, 4, 5, 9, 5, 3, 1, 5, 9, 5, 8, 0, 4, 9, 6, 3, 4, 5, 2, 8, 9, 0, 7, 7, 2, 1, 8, 2, 0, 9, 9, 1, 3, 1, 1, 6, 0, 2, 2, 7, 1, 5, 4, 0, 9, 0, 3, 2, 2, 0, 5, 8, 5, 4, 9
Offset: 1

Author

Anders Hellström, Nov 25 2015

Keywords

Examples

			1.6010751539237287793270647677478354595315958049634528907721820991...
		

Crossrefs

Programs

  • PARI
    default(realprecision,2000);solve(x=0.01, 2, x^(x^x)-exp(1))

A264807 Decimal expansion of the positive root of x^(x^x) = Pi.

Original entry on oeis.org

1, 6, 5, 0, 1, 7, 9, 7, 5, 0, 7, 6, 8, 8, 4, 8, 3, 5, 9, 7, 4, 4, 6, 8, 3, 1, 1, 9, 9, 2, 0, 4, 7, 6, 3, 7, 2, 6, 1, 8, 6, 8, 9, 1, 2, 5, 3, 4, 2, 1, 4, 8, 2, 4, 3, 2, 0, 8, 0, 8, 0, 6, 8, 1, 2, 8, 8, 4, 6, 1, 4, 3, 0, 7, 0, 7, 4, 1, 2, 7
Offset: 1

Author

Anders Hellström, Nov 25 2015

Keywords

Examples

			1.65017975076884835974468311992047637261868912534214824320808068128846...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^(x^x) == Pi, {x, 1}, WorkingPrecision -> 105]][[1]] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    default(realprecision,2000);solve(x=0.01, 2, x^(x^x)-Pi)