cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A264848 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 19-gonal: (17n^2 - 15n)/2.

Original entry on oeis.org

1, 9, 224, 631909, 58000804596, 61688194098028272863216, 2514637794509678630513616176470588235294117671, 941048382372874985200592647058823529411764708485294117647058823529411764705882352941176469
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 19, 19224, 19224631909 are 19-gonal.
		

Crossrefs

Programs

  • PARI
    enneadecagonal(n)=ispolygonal(n, 19)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!enneadecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 16 2018

A264733 a(n) is the smallest number > 1 such that the concatenation a(1)a(2)...a(n) is a perfect power.

Original entry on oeis.org

4, 9, 13, 31556, 4433200001, 7330164793357114944, 364233003001227343654904892703798707409, 30558883460500823396683989630832748682356643682219859233661160618544138815441
Offset: 1

Views

Author

Anders Hellström, Nov 22 2015

Keywords

Crossrefs

Programs

  • Maple
    a[1]:= 4: C:= 4:
    for n from 2 to 9 do
      looking:= true;
      for d from 1 while looking do
         L:= 10^d*C + 10^(d-1);
         U:= 10^d*C + 10^d - 1;
         p:= 1;
         while p < ilog2(U) do
          p:= nextprime(p);
            Lp:= ceil(L^(1/p));
            Up:= floor(U^(1/p));
            while not (Lp::integer and Up::integer) do
               Digits:= 2*Digits;
               Lp:= eval(Lp);
               Up:= eval(Up);
            od;
            if Lp <= Up then
              Cp:= Lp^p;
              a[n]:= Cp - 10^d*C;
              C:= Cp;
              looking:= false;
              break
            fi
         od
      od
    od:
    seq(a[i],i=1..9); # Robert Israel, Nov 27 2015
  • Mathematica
    a = {}; Do[k = 2; While[! Or[# == 1, GCD @@ FactorInteger[#][[All, -1]] > 1] &@ FromDigits@ Flatten@ Join[#, IntegerDigits@ k], k++] &@ Map[IntegerDigits, a]; AppendTo[a, k], {i, 4}]; a (* Michael De Vlieger, Jan 23 2017 *)
  • PARI
    first(m)=my(s="4"); print1(4, ", "); for(i=2,m,n=1; while(!ispower(eval(concat(s,Str(n)))),n++); print1(n, ", "); s=concat(s,Str(n)))

Extensions

a(5)-a(8) from Jon E. Schoenfield, Nov 22 2015

A264804 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 11-gonal: (9n^2 - 7n)/2.

Original entry on oeis.org

1, 1, 526, 64095, 21420730041, 4528059468080555555556, 3834345160635370971474665069772601398563211, 100751687713984558500838936986634939491022212000570658953744730444103042117925197608458
Offset: 1

Views

Author

Anders Hellström, Nov 25 2015

Keywords

Crossrefs

Programs

  • PARI
    hendecagonal(n)=ispolygonal(n,11)
    first(m)=my(v=vector(m),s="");s="1";print1(1, ", ");for(i=2,m,n=1;while(!hendecagonal(eval(concat(s,Str(n)))),n++);print1(n, ", ");s=concat(s,Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 16 2018

A264842 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 13-gonal: (11n^2 - 9n)/2.

Original entry on oeis.org

1, 3, 36, 54765, 123152388, 374848814886363636, 85794018663817263665487289502938826, 107072047880615405294526336549204869795454545454545454545454545454545466
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 13, 1336, 133654765 are 13-gonal.
		

Crossrefs

Programs

  • PARI
    tridecagonal(n)=ispolygonal(n, 13)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!tridecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

More terms from Jon E. Schoenfield, Nov 27 2015

A264849 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 23-gonal: (21n^2 - 19n)/2.

Original entry on oeis.org

1, 30, 648, 6701456, 72020220595275, 970458695858595792221157266, 3377345920936319088412440649783459968197698452784332095, 7477788200541027929765479736500643733301085903714718188060185368351929896324223859775571543015918781111399506
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 130, 130648 are 23-gonal.
		

Crossrefs

Programs

  • PARI
    icositrigonal(n)=ispolygonal(n, 23)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!icositrigonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 15 2018
Showing 1-5 of 5 results.