cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A061743 Numbers k such that k! is divisible by (k+1)^2.

Original entry on oeis.org

11, 14, 15, 17, 19, 20, 23, 24, 26, 27, 29, 31, 32, 34, 35, 38, 39, 41, 43, 44, 47, 48, 49, 50, 51, 53, 54, 55, 56, 59, 62, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Robert G. Wilson v, Jun 21 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[120], IntegerQ[ #!/(# + 1)^2] &]
  • PARI
    { n=0; f=1; for (a=1, 2588, f*=a; if (f%(a + 1)^2 == 0, write("b061743.txt", n++, " ", a)) ) } \\ Harry J. Smith, Jul 27 2009
    
  • PARI
    isok(k) = !(k! % (k+1)^2); \\ Michel Marcus, Jul 01 2018
    
  • Python
    from sympy import primepi
    def A061743(n):
        def f(x): return int(n+2+primepi(x+1)+primepi(x+1>>1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 17 2024

Formula

a(n) = A264828(n+3)-1. Complement of {A178156} - 1. - Chai Wah Wu, Oct 17 2024

A261696 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 17-gonal: (15n^2 - 13n)/2.

Original entry on oeis.org

1, 7, 689, 6797, 67984832, 6798483348333332, 8455610150480042707742277762479, 707328322040172689545426423113211907561874137758547957769721082
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Comments

From Chai Wah Wu, Mar 16 2018: (Start)
There are some interesting patterns observed in the terms. Terms a(5), a(6), a(9), a(10), a(11), a(12), ... share the same prefix of 6798483...
From terms a(n) for n > 5, there seems to a pattern of how they are constructed from previous terms. a(6) is formed by inserting 3483...3 between the penultimate digit and the last digit of a(5). Then a(7) and (8) do not follow this pattern.
The digits of a(9) and a(6) match until the last digit of a(6). Next, a(10), a(11) and (12) are formed from a(9), a(10) and a(11) resp. by inserting 3483...3. Then this pattern is interrupted by a(13) and a(14), and continue again for a(15) ..., etc.
(End)

Examples

			1, 17, 17689, 176896797 are 17-gonal.
		

Crossrefs

Programs

  • PARI
    heptadecagonal(n)=ispolygonal(n, 17)
    first(m)=my(s=""); s="1"; print1(1, ", ");for(i=2, m, n=1; while(!heptadecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(6)-a(8) from Chai Wah Wu, Mar 16 2018

A264733 a(n) is the smallest number > 1 such that the concatenation a(1)a(2)...a(n) is a perfect power.

Original entry on oeis.org

4, 9, 13, 31556, 4433200001, 7330164793357114944, 364233003001227343654904892703798707409, 30558883460500823396683989630832748682356643682219859233661160618544138815441
Offset: 1

Views

Author

Anders Hellström, Nov 22 2015

Keywords

Crossrefs

Programs

  • Maple
    a[1]:= 4: C:= 4:
    for n from 2 to 9 do
      looking:= true;
      for d from 1 while looking do
         L:= 10^d*C + 10^(d-1);
         U:= 10^d*C + 10^d - 1;
         p:= 1;
         while p < ilog2(U) do
          p:= nextprime(p);
            Lp:= ceil(L^(1/p));
            Up:= floor(U^(1/p));
            while not (Lp::integer and Up::integer) do
               Digits:= 2*Digits;
               Lp:= eval(Lp);
               Up:= eval(Up);
            od;
            if Lp <= Up then
              Cp:= Lp^p;
              a[n]:= Cp - 10^d*C;
              C:= Cp;
              looking:= false;
              break
            fi
         od
      od
    od:
    seq(a[i],i=1..9); # Robert Israel, Nov 27 2015
  • Mathematica
    a = {}; Do[k = 2; While[! Or[# == 1, GCD @@ FactorInteger[#][[All, -1]] > 1] &@ FromDigits@ Flatten@ Join[#, IntegerDigits@ k], k++] &@ Map[IntegerDigits, a]; AppendTo[a, k], {i, 4}]; a (* Michael De Vlieger, Jan 23 2017 *)
  • PARI
    first(m)=my(s="4"); print1(4, ", "); for(i=2,m,n=1; while(!ispower(eval(concat(s,Str(n)))),n++); print1(n, ", "); s=concat(s,Str(n)))

Extensions

a(5)-a(8) from Jon E. Schoenfield, Nov 22 2015

A264804 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 11-gonal: (9n^2 - 7n)/2.

Original entry on oeis.org

1, 1, 526, 64095, 21420730041, 4528059468080555555556, 3834345160635370971474665069772601398563211, 100751687713984558500838936986634939491022212000570658953744730444103042117925197608458
Offset: 1

Views

Author

Anders Hellström, Nov 25 2015

Keywords

Crossrefs

Programs

  • PARI
    hendecagonal(n)=ispolygonal(n,11)
    first(m)=my(v=vector(m),s="");s="1";print1(1, ", ");for(i=2,m,n=1;while(!hendecagonal(eval(concat(s,Str(n)))),n++);print1(n, ", ");s=concat(s,Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 16 2018

A264842 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 13-gonal: (11n^2 - 9n)/2.

Original entry on oeis.org

1, 3, 36, 54765, 123152388, 374848814886363636, 85794018663817263665487289502938826, 107072047880615405294526336549204869795454545454545454545454545454545466
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 13, 1336, 133654765 are 13-gonal.
		

Crossrefs

Programs

  • PARI
    tridecagonal(n)=ispolygonal(n, 13)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!tridecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

More terms from Jon E. Schoenfield, Nov 27 2015

A264849 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 23-gonal: (21n^2 - 19n)/2.

Original entry on oeis.org

1, 30, 648, 6701456, 72020220595275, 970458695858595792221157266, 3377345920936319088412440649783459968197698452784332095, 7477788200541027929765479736500643733301085903714718188060185368351929896324223859775571543015918781111399506
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 130, 130648 are 23-gonal.
		

Crossrefs

Programs

  • PARI
    icositrigonal(n)=ispolygonal(n, 23)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!icositrigonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

a(5)-a(8) from Chai Wah Wu, Mar 15 2018
Showing 1-6 of 6 results.