cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Harry J. Smith

Harry J. Smith's wiki page.

Harry J. Smith has authored 108 sequences. Here are the ten most recent ones:

A159767 Continued fraction expansion of A006891.

Original entry on oeis.org

2, 1, 1, 85, 2, 8, 1, 10, 16, 3, 8, 9, 2, 1, 40, 1, 2, 3, 2, 2, 1, 17, 1, 1, 5, 3, 2, 6, 3, 5, 1, 1, 3, 3, 15, 3, 1, 1, 7, 2, 3, 1, 7, 2, 1, 55, 1, 1, 1, 1, 4, 9, 1, 2, 1, 36, 1, 5, 10, 1, 1, 2, 1, 4, 1, 4, 5, 5, 1, 1, 130, 1, 3, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 2, 547, 9, 18, 3, 1, 4, 2, 1, 1, 2, 2, 2, 1, 6, 1
Offset: 0

Author

Harry J. Smith, Apr 21 2009

Keywords

Comments

Feigenbaum bifurcation velocity alpha.

Examples

			-alpha = 2.50290787509589282... = 2 + 1/(1 + 1/(1 + 1/(85 + 1/(2 + ...))))
		

Programs

  • Mathematica
    (* assign to 'x' the Feigenbaum bifurcation velocity alpha *); ContinuedFraction[ x, 100] (* Robert G. Wilson v, May 31 2009 *)
  • PARI
    { default(realprecision,1019); alpha=-2.\
    5029078750958928222839028732182157863812713767271499773361920567\
    7923546317959020670329964974643383412959523186999585472394218237\
    7785445179272863314993372578112163594879503744781260997380598671\
    2397117373289276654044010306698313834600094139322364490657889951\
    2205843172507873377463087853424285351988587500042358246918740820\
    4281700901714823051821621619413199856066129382742649709844084470\
    1008054549677936760888126446406885181552709324007542506497157047\
    0475419932831783645332562415378693957125097066387979492654623137\
    6745918909813116752434221110130913127837160951158341230841503716\
    4997020224681219644081216686527458043026245782561067150138521821\
    6449532543349873487413352795815351016583605455763513276501810781\
    1948369459574850237398235452625632779475397269902012891516645793\
    9420198920248803394051699686551494477396533876979741232354061781\
    9896112494095990353128997733611849847377946108428833293833903950\
    9008914086351525626803381414669279913310743349705143545201344643\
    4264752001621384610729922641994332772918977769053802596851; x=contfrac(-alpha); for (n=1, 996, write("b159767.txt", n-1, " ", x[n])); } (End)

Extensions

Old PARI program deleted by Harry J. Smith, May 19 2009

A159671 Continued fraction expansion of Landau's constant L.

Original entry on oeis.org

0, 1, 1, 5, 3, 1, 1, 2, 1, 1, 6, 3, 1, 8, 11, 2, 1, 1, 27, 4, 1, 1, 2, 3, 3, 3, 1, 1, 4, 1, 3, 11, 1, 1, 3, 1, 1, 1, 2, 3, 26, 10, 3, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 7, 4, 1, 2, 2, 1, 1, 6, 2, 10, 2, 6, 6, 1, 3, 1, 2, 4, 2, 1, 2, 5, 1, 1, 1, 1, 1, 4, 11, 9, 1, 1, 1, 2, 1, 2, 5, 2, 4, 1, 48, 1, 8, 1, 8, 7, 1, 3
Offset: 0

Author

Harry J. Smith, Apr 19 2009

Keywords

Comments

Terms are computed using the conjectured formula.

Examples

			L = 0.543258965342976706952728...= 0 + 1/(1 + 1/(1 + 1/(5 + 1/(3 + ...)))).
		

Programs

  • PARI
    { default(realprecision, 1080); x=contfrac(gamma(1/3)*gamma(5/6)/gamma(1/6)); d=0; for (n=0, 1000, write("b159671.txt", n, " ", x[n+1])); }

Formula

It is conjectured that L = 0.5432589653429767... = Gamma(1/3)*Gamma(5/6)/Gamma(1/6).

A159821 Continued fraction for (e*Pi*phi)^2 A131566, where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

190, 1, 12, 2, 2, 1, 12, 2, 10, 2, 1, 16, 1, 226, 2, 1, 2, 1, 2, 2, 1, 1, 9, 3, 7, 1, 1, 1, 2, 1, 1, 1, 6, 2, 2, 494, 1, 1, 60, 194, 2, 1, 2, 1, 4, 1, 1, 7, 1, 4, 7, 1, 1, 1, 5, 4, 2, 5, 2, 1, 4, 4, 1, 7, 1, 16, 4, 1, 1, 4, 2, 1, 5283, 4, 11, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 3, 1, 3, 5, 3, 1, 2, 1, 1, 1
Offset: 0

Author

Harry J. Smith, Apr 26 2009

Keywords

Examples

			(e*Pi*phi)^2 = 190.925523334... = 190 + 1/(1 + 1/(12 + 1/(2 + 1/(2 + ...)))).
		

Programs

  • Mathematica
    ContinuedFraction[(E*Pi*GoldenRatio)^2,100] (* Harvey P. Dale, Jan 15 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); phi = (1 + sqrt(5))/2; x=contfrac((exp(1)*Pi*phi)^2); for (n=1, 20001, write("b159821.txt", n-1, " ", x[n])); }

A159824 Continued fraction for Pi^Pi (cf. A073233).

Original entry on oeis.org

36, 2, 6, 9, 2, 1, 2, 5, 1, 1, 6, 2, 1, 291, 1, 38, 50, 1, 2, 5, 4, 1, 2, 2, 1, 5, 1, 4, 13, 2, 1, 4, 3, 3, 1, 2, 25, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 1, 43, 1, 2, 7, 3, 1, 1, 1, 2, 4, 2, 1, 1, 3, 1, 3, 3, 2, 2, 16, 3, 5, 2, 1, 5, 2, 1, 10, 1, 1, 3, 1, 13, 1, 1, 3, 1, 10, 4, 1, 1, 1, 38, 1, 2, 2, 1, 1, 3
Offset: 0

Author

Harry J. Smith, Apr 30 2009

Keywords

Examples

			36.4621596072079117709908260... = 36 + 1/(2 + 1/(6 + 1/(9 + 1/(2 + ...)))).
		

Programs

  • Mathematica
    ContinuedFraction[Pi^Pi,200] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2010 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^Pi); for (n=1, 20001, write("b159824.txt", n-1, " ", x[n])); }

Extensions

Edited by N. J. A. Sloane, Jul 22 2010

A160045 Continued fraction for Pi^Pi^Pi A073234.

Original entry on oeis.org

1340164183006357435, 3, 2, 1, 3, 4, 1, 1, 5, 1, 1, 1, 4, 14, 1, 2, 5, 2, 3, 1, 2, 1, 50, 785, 1, 1, 2, 34, 1, 2, 1, 3, 1, 3, 3, 1, 1, 1, 2, 2, 5, 3, 9, 1, 1, 1, 1, 1, 1, 8, 13, 2, 11, 444, 3, 1, 2, 86, 1, 25, 4, 2, 25, 18, 2, 1, 192, 1, 4, 1, 5, 3, 14, 4, 15, 2, 3, 8, 4, 2, 36, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Author

Harry J. Smith, May 01 2009

Keywords

Comments

Pi^Pi^Pi = 1340164183006357435.2974491296401314150993749745734992377879...

Examples

			Pi^Pi^Pi = 1340164183006357435 + 1/(3 + 1/(2 + 1/(1 + 1/(3 + ...)))).
		

Crossrefs

Cf. A073234 Decimal expansion of Pi^Pi^Pi.

Programs

  • Mathematica
    ContinuedFraction[Pi^Pi^Pi,90] (* Harvey P. Dale, Sep 10 2014 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^Pi^Pi); for (n=1, 20001, write("b160045.txt", n-1, " ", x[n])); }

A160331 Decimal expansion of 2^(1/3) + sqrt(3).

Original entry on oeis.org

2, 9, 9, 1, 9, 7, 1, 8, 5, 7, 4, 6, 3, 7, 5, 0, 4, 5, 8, 2, 9, 4, 6, 5, 6, 9, 4, 8, 7, 8, 4, 1, 0, 0, 7, 1, 7, 5, 1, 3, 0, 5, 6, 7, 1, 8, 5, 1, 1, 8, 8, 8, 6, 0, 8, 1, 3, 7, 7, 8, 2, 0, 9, 1, 6, 0, 7, 2, 3, 2, 6, 9, 3, 4, 2, 2, 7, 5, 9, 5, 2, 0, 8, 1, 0, 5, 4, 2, 7, 4, 9, 1, 9, 3, 5, 0, 3, 6, 6, 9, 8, 2, 9, 9, 3
Offset: 1

Author

Harry J. Smith, May 09 2009

Keywords

Comments

2^(1/3) + sqrt(3) = 2^(1/3) + 3^(1/2).

Examples

			2.99197185746375045829465694878410071751305671851188860813778209160723...
		

Crossrefs

Cf. A039923 Continued fraction.

Programs

  • Mathematica
    RealDigits[Surd[2,3]+Sqrt[3],10,120][[1]] (* Harvey P. Dale, Jan 18 2013 *)
  • PARI
    { default(realprecision, 20080); x=2^(1/3)+3^(1/2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b160331.txt", n, " ", d)); }

Extensions

Fixed my PARI program, had -n Harry J. Smith, May 19 2009

A160387 Decimal expansion of 4^5 * Sum_{n>=0} 1/4^(2^n).

Original entry on oeis.org

3, 2, 4, 0, 1, 5, 6, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 5, 7, 0, 7, 3, 6, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 4, 1, 9, 0, 8, 4, 8, 9, 4, 2, 6, 4, 6, 0, 7, 1, 6, 4, 5, 3, 9, 9, 9, 6, 5, 5, 3, 5, 2, 8, 8, 9, 4, 8, 9, 3, 5, 2, 2, 4, 6, 2, 7, 2, 6, 1, 9, 3, 6, 9, 6, 0, 7, 6, 6, 3, 5, 8, 7, 9, 9, 9, 9, 2, 3, 8, 0
Offset: 3

Author

Harry J. Smith, May 12 2009

Keywords

Examples

			324.0156252384185791570736512312578270241908489426460716453999655352889...
		

Crossrefs

Cf. A006465 Continued fraction.

Programs

  • PARI
    { default(realprecision, 20080); x=4^5*suminf(n=0, 1/4^(2^n))/100; for (n=3, 20000, d=floor(x); x=(x-d)*10; write("b160387.txt", n, " ", d)); }

Extensions

Fixed my PARI program, had -n Harry J. Smith, May 19 2009

A161684 Continued fraction for Pi/(2*sqrt(2)).

Original entry on oeis.org

1, 9, 31, 1, 1, 17, 2, 3, 3, 2, 3, 1, 1, 2, 2, 1, 4, 9, 1, 3, 1, 1, 3, 2, 3, 3, 2, 10, 7, 1, 5, 1, 9, 1, 13, 1, 1, 1, 1, 1, 4, 3, 4, 8, 1, 3, 7, 1, 15, 1, 3, 1, 3, 5, 2, 1, 1, 5, 1, 1, 5, 1, 3, 3, 2, 33, 1, 4, 3, 111, 3, 1, 3, 4, 1, 5, 1, 5, 31, 1, 8, 1, 2, 2, 1, 1, 12, 1, 5, 3, 2, 1, 1, 1, 1, 147, 3, 2, 3, 8
Offset: 0

Author

Harry J. Smith, Jun 17 2009

Keywords

Examples

			1.11072073453959156175397024... = 1 + 1/(9 + 1/(31 + 1/(1 + 1/(1 + ...))))
		

Crossrefs

Cf. A093954 Decimal expansion.

Programs

  • Mathematica
    ContinuedFraction[Pi/(2Sqrt[2]),100] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi*sqrt(2)/4); for (n=0, 20000, write("b161684.txt", n, " ", x[n+1])); }

A161688 Continued fraction for zeta(1/2) (negated).

Original entry on oeis.org

1, 2, 5, 1, 4, 6, 1, 1, 2, 6, 1, 1, 2, 1, 1, 1, 37, 3, 2, 1, 2, 4, 1, 368, 2, 1, 23, 18, 1, 1, 2, 2, 2, 11, 1, 4, 1, 5, 40, 1, 2, 1, 2, 1, 1, 1, 1, 2, 4, 1, 10, 2, 5, 4, 1, 12, 2, 5, 3, 1, 7, 2, 1, 2, 1, 1, 1, 6, 1, 12, 1, 2, 2, 2, 1, 2, 36, 2, 3, 1, 1, 1, 4, 3, 2, 45, 4, 5, 1, 1, 7, 3, 1, 1, 3, 6, 2, 1, 19
Offset: 0

Author

Harry J. Smith, Jun 29 2009

Keywords

Examples

			1.460354508809586812889499152... = 1 + 1/(2 + 1/(5 + 1/(1 + 1/(4 + ...))))
		

Crossrefs

Cf. A059750 Decimal expansion.

Programs

  • PARI
    { allocatemem(932245000); default(realprecision, 5400); x=contfrac(-zeta(1/2)); for (n=0, 5000, write("b161688.txt", n, " ", x[n+1])); }

A159822 Continued fraction for Pi*e A019609.

Original entry on oeis.org

8, 1, 1, 5, 1, 3, 1, 4, 12, 3, 2, 1, 5, 2, 12, 1, 1, 1, 10, 2, 2, 2, 3, 8, 3, 2, 2, 2, 29, 1, 1, 13, 1, 1, 8, 11, 16, 3, 1, 4, 163, 2, 1, 1, 1, 5, 1, 6, 1, 17, 5, 1, 3, 6, 3, 1, 4, 1, 1, 1, 5, 1, 7, 15, 4, 1, 1, 1, 9, 1, 1, 4, 1, 1, 9, 1, 55, 14, 14, 1, 3, 2, 3, 7, 1, 118, 1, 2, 29, 1, 2, 2, 1, 4, 1, 2, 1
Offset: 0

Author

Harry J. Smith, Apr 27 2009

Keywords

Examples

			Pi*e = 8.53973422267356706546... = 8 + 1/(1 + 1/(1 + 1/(5 + 1/(1 + ...))))
		

Programs

  • Mathematica
    ContinuedFraction[E*Pi,5! ] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi*exp(1)); for (n=1, 20001, write("b159822.txt", n-1, " ", x[n])); }