A000012 The simplest sequence of positive numbers: the all 1's sequence.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))) = A001622. 1/9 = 0.11111111111111... From _Wolfdieter Lang_, Feb 09 2012: (Start) Modd 7 for nonnegative odd numbers not divisible by 3: A007310: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, ... Modd 3: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (End)
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 692 pp. 90 and 297, Ellipses, Paris, 2004.
- Xavier Merlin, Méthodix Algèbre, Exercice 1-a), page 153, Ellipses, Paris, 1995.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 277, 284.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- Paul Zeitz, The Art and Craft of Mathematical Problem Solving, The Great Courses, The Teaching Company, 2010 (DVDs and Course Guidebook, Lecture 6: "Pictures, Recasting, and Points of View", pp. 32-34).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 [Useful when plotting one sequence against another.]
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Harlan Brothers, Factorial: Summation (formula 06.01.23.0002), The Wolfram Functions Site - _Harlan J. Brothers_, Nov 01 2009
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 172. Book's website
- L. B. W. Jolley, Summation of Series, Dover, 1961
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Robert Price, Comments on A000012 concerning Elementary Cellular Automata, Jan 31 2016
- N. J. A. Sloane, Illustration of initial terms
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Eric Weisstein's World of Mathematics, Golden Ratio
- Eric Weisstein's World of Mathematics, Chromatic Number
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- G. Xiao, Contfrac
- Index entries for "core" sequences
- Index entries for characteristic functions
- Index entries for continued fractions for constants
- Index to divisibility sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (1).
- Index entries for sequences that are fixed points of mappings
Crossrefs
Programs
-
Haskell
a000012 = const 1 a000012_list = repeat 1 -- Reinhard Zumkeller, May 07 2012
-
Magma
[1 : n in [0..100]];
-
Maple
seq(1, i=0..150);
-
Mathematica
Array[1 &, 50] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
-
Maxima
makelist(1, n, 1, 30); /* Martin Ettl, Nov 07 2012 */
-
PARI
{a(n) = 1};
-
Python
print([1 for n in range(90)]) # Michael S. Branicky, Apr 04 2022
Formula
a(n) = 1.
G.f.: 1/(1-x).
E.g.f.: exp(x).
G.f.: Product_{k>=0} (1 + x^(2^k)). - Zak Seidov, Apr 06 2007
Completely multiplicative with a(p^e) = 1.
Regarded as a square array by antidiagonals, g.f. 1/((1-x)(1-y)), e.g.f. Sum T(n,m) x^n/n! y^m/m! = e^{x+y}, e.g.f. Sum T(n,m) x^n y^m/m! = e^y/(1-x). Regarded as a triangular array, g.f. 1/((1-x)(1-xy)), e.g.f. Sum T(n,m) x^n y^m/m! = e^{xy}/(1-x). - Franklin T. Adams-Watters, Feb 06 2006
Dirichlet g.f.: zeta(s). - Ilya Gutkovskiy, Aug 31 2016
a(n) = Sum_{l=1..n} (-1)^(l+1)*2*cos(Pi*l/(2*n+1)) = 1 identically in n >= 1 (for n=0 one has 0 from the undefined sum). From the Jolley reference, (429) p. 80. Interpretation: consider the n segments between x=0 and the n positive zeros of the Chebyshev polynomials S(2*n, x) (see A049310). Then the sum of the lengths of every other segment starting with the one ending in the largest zero (going from the right to the left) is 1. - Wolfdieter Lang, Sep 01 2016
As a lower triangular matrix, T = M*T^(-1)*M = M*A167374*M, where M(n,k) = (-1)^n A130595(n,k). Note that M = M^(-1). Cf. A118800 and A097805. - Tom Copeland, Nov 15 2016
Comments