A382813 Denominator of the n-th partial sum of the squares of the harmonic numbers.
1, 4, 18, 144, 200, 400, 4900, 78400, 635040, 6350400, 64033200, 768398400, 9275666400, 8657288640, 16232416200, 519437318400, 2779951574400, 16679709446400, 60213751101504, 3823095308032, 1216439416192, 26761667156224, 1769615240705312, 127412297330782464, 3062795608913040000
Offset: 1
Examples
The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3) = 18.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
H2:= n-> add(harmonic(k)^2, k = 1..n): seq(denom(H2(n)), n=1..25);
-
PARI
a(n) = denominator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ Michel Marcus, Apr 07 2025
Formula
a(n) = denominator((n+1)*H(n)^2-(2*n+1)*H(n)+2*n), where H(n) is the n-th harmonic number.
a(n) = denominator((S(n)*H(n)^2+(2*n-2*S(n)+1)*H(n) - 2*n)/(H(n) - 1)), where S(n) = the n-th partial sum of H(n).
Comments