cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A382812 Numerator of the n-th partial sum of the squares of the harmonic numbers.

Original entry on oeis.org

1, 13, 119, 1577, 3233, 8867, 141563, 2844129, 28119709, 335676251, 3968696491, 55023970333, 758025067309, 799020611041, 1676892996083, 59597395635137, 351844709221043, 2314823924364859, 9114392136427625, 628176680098075, 216039223801697, 5117413095318143, 363066107054194281, 27957386425926920257
Offset: 1

Views

Author

Gary Detlefs, Apr 05 2025

Keywords

Examples

			The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3)=119.
		

Crossrefs

Cf. A001008, A002805, A382813 (denominators).

Programs

  • Maple
    H2:= n-> add(harmonic(k)^2, k = 1..n): seq(numer(H2(n)), n=1..25);
  • Mathematica
    Accumulate[HarmonicNumber[Range[30]]^2]//Numerator (* Harvey P. Dale, Aug 10 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ Michel Marcus, Apr 07 2025

Formula

a(n) = numerator((n+1)*H(n)^2-(2*n+1)*H(n) + 2*n), where H(n) is the n-th harmonic number.
a(n) = numerator((S(n)*H(n)^2 + (2*n - 2*S(n) + 1)*H(n)-2*n)/(H(n)-1)), where S(n) is the n-th partial sum of H(n).
Showing 1-1 of 1 results.