A340738
Denominator of a sequence of fractions converging to e.
Original entry on oeis.org
1, 2, 7, 18, 71, 252, 1001, 4540, 18089, 99990, 398959, 2602278, 10391023, 78132152, 312129649, 2658297528, 10622799089, 101072656170, 403978495031, 4247085597370, 16977719590391, 195445764537012, 781379079653017, 9775727355457908, 39085931702241241, 528050767520083262, 2111421691000680031
Offset: 1
Sequence of fractions begins 3/1, 5/2, 19/7, 49/18, 193/71, 685/252, 2721/1001, 12341/4540, ...
-
e:=proc(a,b,n)option remember; e(a,b,1):=a; e(a,b,2):=b; if n>2 and n mod 2 =1 then 2*e(a,b,n-1)+n*e(a,b,n-2) else if n>3 and n mod 2 = 0 then (n+2)*e(a,b,n-1)/2 -(e(a,b,n-2)+(n-2)*e(a,b,n-3)/2) fi fi end
seq(e(1,2,n), n = 1..20)
# code to print the sequence of fractions and error
for n from 1` to 20 do print(e(3,5,n)/e(1,2,n), evalf(exp(1)-e(3,5,n)/e(1,2,n)) od
-
a[1] = 1; a[2] = 2; a[n_] := a[n] = If[EvenQ[n], (n + 2)*a[n - 1]/2 - (a[n - 2] + (n - 2)*a[n - 3]/2), 2*a[n - 1] + n*a[n - 2]]; Array[a, 20] (* Amiram Eldar, Jan 18 2021 *)
A343689
a(1)=0, a(2)=1, a(n) = (4*n-2)*a(n-1) + a(n-2), n > 2.
Original entry on oeis.org
0, 1, 10, 141, 2548, 56197, 1463670, 43966297, 1496317768, 56904041481, 2391466059970, 110064342800101, 5505608606065020, 297412929070311181, 17255455494684113518, 1070135653599485349297, 70646208593060717167120, 4946304737167849687047697, 366097196759013937558696698
Offset: 1
a(4)=14*10+1, a(5)=18*141+10...
-
e := proc(a, b, n) option remember; if n = 1 then a; else if n = 2 then b; else (4*n - 2)*e(a, b, n - 1) + e(a, b, n - 2); end if; end if; end proc
for n from 1 to 20 do print(e(0,1,n)) od
-
RecurrenceTable[{a[1]==0,a[2]==1,a[n]==(4n-2)a[n-1]+a[n-2]},a,{n,20}] (* Harvey P. Dale, Dec 17 2021 *)
A343688
a(1)=1, a(2)=0, a(n) = (4*n-2)*a(n-1) + a(n-2), n > 2.
Original entry on oeis.org
1, 0, 1, 14, 253, 5580, 145333, 4365570, 148574713, 5650204664, 237457170601, 10928680052310, 546671459786101, 29531187508501764, 1713355546952888413, 106257575098587583370, 7014713312053733390833, 491136189418859924941680, 36351092730307688179075153
Offset: 1
a(4)=14*1+0, a(5)=18*14+1, ...
-
e := proc(a, b, n) option remember; if n = 1 then a; else if n = 2 then b; else (4*n - 2)*e(a, b, n - 1) + e(a, b, n - 2); end if; end if; end proc;
for n from 1 to 20 do print(e(1,0,n)) od
-
a[1]=1;a[2]=0;a[n_]:=a[n]=(4n-2)a[n-1]+a[n-2];Array[a,20] (* Giorgos Kalogeropoulos, Apr 27 2021 *)
Showing 1-3 of 3 results.
Comments