cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vladeta Jovovic

Vladeta Jovovic's wiki page.

Vladeta Jovovic has authored 1458 sequences. Here are the ten most recent ones:

A184184 Triangle read by rows: T(n,k) is the number of permutations of [n] having k adjacent cycles (0 <= k <= n). An adjacent cycle is a cycle of the form (i, i+1, i+2, ...) (including 1-element cycles).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 6, 8, 6, 3, 1, 34, 42, 27, 12, 4, 1, 216, 258, 156, 64, 20, 5, 1, 1566, 1824, 1068, 420, 125, 30, 6, 1, 12840, 14664, 8400, 3220, 930, 216, 42, 7, 1, 117696, 132360, 74580, 28080, 7950, 1806, 343, 56, 8, 1, 1193760, 1326120, 737640, 273960, 76440, 17094, 3192, 512, 72, 9, 1
Offset: 0

Author

Emeric Deutsch, Feb 16 2011 (based on communication from Vladeta Jovovic)

Keywords

Comments

Sum of entries in row n is n!.
T(n,0) = A184185(n).
T(n,1) = A013999(n-1).
Sum_{k>=0} k*T(n,k) = 1! + 2! + ... + n! = A007489(n).

Examples

			T(3,2) = 2 because we have (1)(23) and (12)(3).
T(4,2) = 6 because we have (1)(234), (1)(24)(3), (12)(34), (123)(4), (14)(2)(3), and (13)(2)(4).
Triangle starts:
   1;
   0,  1;
   0,  1,  1;
   1,  2,  2,  1;
   6,  8,  6,  3,  1;
  34, 42, 27, 12,  4,  1;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: add((-1)^(n-k-i)*factorial(k+i)*binomial(i+1, n-k-i), i = ceil((1/2)*n-(1/2)*k-1/2) .. n-k)/factorial(k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form

Formula

G.f. of column k is (1/k!)*z^k*(1-z)*Sum_{i>=0} (k+i)!*(z-z^2)^i (private communication from Vladeta Jovovic, May 26 2009).
T(n,k) = (1/k!)*Sum_{i=ceiling((n-k-1)/2)..n-k} (-1)^(n-k-i)*(k+i)!*binomial(i+1, n-k-i).
The bivariate g.f. is G(t,z) = ((1-z)/(1-tz))*F((z-z^2)/(1-tz)), where F(z) = Sum_{j>=0} j!*z^j.

A184185 Number of permutations of {1,2,...,n} having no cycles of the form (i, i+1, i+2, ..., i+j-1) (j >= 1).

Original entry on oeis.org

1, 0, 0, 1, 6, 34, 216, 1566, 12840, 117696, 1193760, 13280520, 160841520, 2107021680, 29689833600, 447821503920, 7199590366080, 122907276334080, 2220524598297600, 42328747652446080, 849064844592518400, 17877531486897734400, 394246607165708774400
Offset: 0

Author

Emeric Deutsch, Feb 16 2011 (based on communication from Vladeta Jovovic)

Keywords

Comments

a(n) = A184184(n,0).

Examples

			a(4)=6 because we have (13)(24), (1432), (1342), (1423), (1243), and (1324).
		

Crossrefs

Programs

  • Maple
    a := proc(n) add((-1)^(n-i)*factorial(i)*binomial(i+1, n-i), i = ceil((1/2)*n-1/2) .. n) end proc: seq(a(n), n = 0 .. 22);
  • Mathematica
    a[n_] := Sum[(-1)^(n-i)*i!*Binomial[i+1, n-i], {i, Ceiling[(n-1)/2], n}];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 29 2017, from Maple *)
  • PARI
    a(n) = sum(k=n\2, n, (-1)^(n-k)*k!*binomial(k+1, n-k)); \\ Seiichi Manyama, Nov 30 2021
    
  • PARI
    a(n) = if(n<3, 0^n, (n+2)*a(n-1)-2*(n-1)*a(n-2)+(n-2)*a(n-3)); \\ Seiichi Manyama, Nov 30 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*(1-x)^(k+1))) \\ Seiichi Manyama, Nov 30 2021

Formula

G.f.: (1-z)*F(z-z^2), where F(z) = Sum_{j>=0} j!*z^j (private communication from Vladeta Jovovic, May 26 2009).
a(n) = Sum_{i=ceiling((n-1)/2)..n} (-1)^(n-i)*i!*binomial(i+1,n-i).
G.f.: 1/Q(0), where Q(k) = 1 + x/(1-x) - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ n! / exp(1) * (1 - 1/n - 1/(2*n^2) - 2/(3*n^3) - 23/(24*n^4) - 151/(120*n^5) - 119/(720*n^6) + 14789/(1260*n^7) + 1223843/(13440*n^8) + ...). - Vaclav Kotesovec, Nov 30 2021
a(n) = (n+2) * a(n-1) - 2 * (n-1) * a(n-2) + (n-2) * a(n-3) for n > 2. - Seiichi Manyama, Nov 30 2021

A168655 Number of compositions such that the number of parts is divisible by the first part.

Original entry on oeis.org

1, 1, 3, 5, 11, 22, 44, 88, 177, 355, 710, 1419, 2838, 5679, 11363, 22727, 45443, 90862, 181703, 363419, 726903, 1453875, 2907667, 5814880, 11628864, 23256828, 46513965, 93031069, 186068503, 372142797, 744280096, 1488527555, 2976987042, 5953897971, 11907811651
Offset: 1

Author

Vladeta Jovovic, Dec 01 2009

Keywords

Crossrefs

Cf. A079501.

Programs

  • Maple
    b:= proc(n,t,g) option remember; `if`(n=0,
          `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1,
          `if`(g=0,i,g)), i=1..n))
        end:
    a:= n-> b(n,0,0):
    seq(a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
  • Mathematica
    A101510[n_] := Sum[If[Mod[i+1, k+1] == 0, Binomial[n-k, i], 0], {k, 0, n/2}, {i, 0, n-k}]; A168655 =  Join[{1}, Table[A101510[n], {n, 0, 32}] // Differences] (* Jean-François Alcover, Jan 24 2014 *)

Formula

G.f.: (1-x)*Sum(x^(2*n-1)/((1-x)^n-x^n),n=1..infinity), First differences of A101510.
a(n) ~ log(2) * 2^(n-1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Alois P. Heinz, Dec 15 2009

A171625 Number of compositions of n such that the number of parts is divisible by the smallest part.

Original entry on oeis.org

1, 1, 3, 7, 15, 29, 58, 118, 242, 493, 997, 2005, 4024, 8071, 16183, 32439, 65003, 130214, 260768, 522084, 1045045, 2091489, 4185209, 8373979, 16753651, 33516419, 67047467, 134118462, 268274858, 536611011, 1073321222, 2146803124, 4293866550, 8588154649
Offset: 1

Author

Vladeta Jovovic, Dec 13 2009

Keywords

Crossrefs

Cf. A168657.

Programs

  • Maple
    b:= proc(n,t,g) option remember; `if` (n=0, `if` (irem(t, g)=0, 1, 0), add (b(n-i, t+1, min(i, g)), i=1..n)) end: a:= n-> b(n, 0, infinity): seq (a(n), n=1..40);  # Alois P. Heinz, Dec 15 2009
  • Mathematica
    a[n_] := SeriesCoefficient[ Sum[(1-x^k)/(1-x)^k*Sum[x^(k*d), {d, Divisors[k]}], {k, 0, n}], {x, 0, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 24 2015 *)

Formula

G.f.: Sum_{n>=0}[(1-x^n)/(1-x)^n*Sum_{d|n}x^(n*d)].
a(n) ~ 2^(n-1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Alois P. Heinz, Dec 15 2009

A158615 Expansion of Sum_{n>0} n*n!*x^n/(1-n!*x^n).

Original entry on oeis.org

1, 5, 19, 105, 601, 4445, 35281, 324897, 3266569, 36360065, 439084801, 5751188913, 80951270401, 1220673888257, 19615124183329, 334777645154817, 6046686277632001, 115243914079782593, 2311256907767808001
Offset: 1

Author

Vladeta Jovovic, Mar 22 2009

Keywords

Comments

a(n) = Sum_{d|n} d*d!^(n/d).

Crossrefs

Programs

  • Maple
    nmax := 40: gf := add( taylor( n*n!*x^n/(1-n!*x^n),x=0,nmax+1),n=1..nmax ) : coeffs(convert(gf,polynom)) ; # R. J. Mathar, Mar 30 2009
  • Mathematica
    nmax=20; Rest[CoefficientList[Series[Sum[k*k!*x^k/(1-k!*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 19 2015 *)

Formula

a(n) ~ n * n!. - Vaclav Kotesovec, Dec 19 2015

Extensions

More terms from R. J. Mathar, Mar 30 2009

A168173 Number of partitions of n in which the sum of reciprocals of parts is less than 1.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 3, 4, 4, 6, 8, 12, 13, 16, 18, 21, 25, 32, 38, 46, 55, 65, 78, 92, 103, 122, 140, 165, 193, 229, 264, 305, 345, 395, 451, 517, 590, 682, 781, 893, 1013, 1165, 1324, 1518, 1717, 1945, 2188, 2468, 2753, 3089, 3457, 3865, 4321, 4856, 5441, 6108, 6831
Offset: 1

Author

Vladeta Jovovic, Nov 19 2009

Keywords

Crossrefs

Cf. A051908.

Programs

  • Maple
    a := proc (n) local P, ct, j: with(combinat): P := partition(n): ct := 0: for j to numbpart(n) do if add(1/P[j][i], i = 1 .. nops(P[j])) < 1 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 60); # Emeric Deutsch, Dec 02 2009
  • Mathematica
    Table[Count[IntegerPartitions[n],?(Total[1/#]<1&)],{n,60}] (* _Harvey P. Dale, Dec 14 2012 *)

Extensions

Extended by Emeric Deutsch, Dec 02 2009

A159034 Inverse Euler transform of A155200.

Original entry on oeis.org

2, 7, 170, 16380, 6710886, 11453246035, 80421421917330, 2305843009213685760, 268650182136584261045760, 126765060022822940149666965093, 241677817415439249618874010960062650, 1858395433210885261794643189387357732203180, 57560679870263253393868202642364377389525958615670
Offset: 1

Author

Keywords

Crossrefs

Cf. A155200.

Programs

  • Mathematica
    Table[Sum[2^(d^2)*MoebiusMu[n/d], {d, Divisors[n]}]/n, {n, 1, 12}] (* Vaclav Kotesovec, Oct 09 2019 *)
  • PARI
    a(n)={sumdiv(n, d, 2^(d^2)*moebius(n/d))/n} \\ Andrew Howroyd, Jan 08 2020

Formula

a(n) = (1/n)*Sum_{d|n} 2^(d^2)*moebius(n/d).
a(n) ~ 2^(n^2) / n. - Vaclav Kotesovec, Oct 09 2019

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 08 2020

A171628 Number of compositions of n such that the smallest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 3, 4, 6, 8, 11, 15, 19, 22, 25, 30, 37, 47, 62, 83, 108, 136, 168, 205, 247, 295, 354, 429, 524, 642, 789, 972, 1196, 1466, 1789, 2173, 2625, 3155, 3778, 4515, 5391, 6437, 7692, 9201, 11014, 13186, 15780, 18865, 22516, 26818, 31871, 37791
Offset: 1

Author

Vladeta Jovovic, Dec 13 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,t,g) option remember; `if` (n=0, `if` (irem(g, t)=0, 1, 0), add (b(n-i, t+1, min(i, g)), i=1..n)) end: a:= n-> b(n,0,infinity): seq (a(n), n=1..60); # Alois P. Heinz, Dec 15 2009
    A171628 := proc(n) local g,k; g := 0 ; for k from 0 to n do g := g+add (x^(k*d)*(1-x^d)/(1-x)^d,d=numtheory[divisors](k)) ; g := expand(g) ; end do ; coeftayl(g,x=0,n) ; end proc: seq(A171628(n),n=1..60) ; # R. J. Mathar, Dec 14 2009
  • Mathematica
    b[n_, t_, g_] := b[n, t, g] = If[n == 0, If [Mod[g, t] == 0, 1, 0], Sum[b[n - i, t + 1, Min[i, g]], {i, n}]];
    a[n_] := b[n, 0, Infinity];
    Array[a, 60] (* Jean-François Alcover, May 23 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>=0} [Sum_{d|n} x^(n*d)*(1-x^d)/(1-x)^d].

Extensions

More terms from R. J. Mathar and Alois P. Heinz, Dec 14 2009

A171634 Number of compositions of n such that the number of parts is divisible by the greatest part.

Original entry on oeis.org

1, 1, 3, 2, 8, 13, 21, 38, 89, 173, 302, 545, 1109, 2309, 4564, 8601, 16188, 31365, 62518, 125813, 251119, 493123, 956437, 1854281, 3633938, 7218166, 14444539, 28868203, 57300450, 112921744, 221760513, 436117749, 861764899, 1711773936
Offset: 1

Author

Vladeta Jovovic, Dec 13 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,t,g) option remember; `if`(n=0, `if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1, max(i, g)), i=1..n)) end: a:= n-> b(n,0,0): seq(a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
  • Mathematica
    b[n_, t_, g_] := b[n, t, g] = If[n == 0, If [Mod[t, g] == 0, 1, 0], Sum[b[n - i, t + 1, Max[i, g]], {i, 1, n}]];
    a[n_] := b[n, 0, 0];
    Array[a, 40] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>=0} Sum_{d|n} ((x^(d+1)-x)^n-(x^d-x)^n)/(x-1)^n.

Extensions

More terms from Alois P. Heinz, Dec 15 2009

A163318 Expansion of g.f.: Product_{k>=1} 1+k*x^k/(1-x^k)^2.

Original entry on oeis.org

1, 1, 4, 8, 19, 36, 76, 142, 272, 496, 900, 1592, 2784, 4792, 8138, 13688, 22703, 37380, 60838, 98310, 157298, 250162, 394332, 618032, 961512, 1487563, 2286610, 3496776, 5316666, 8044598, 12110538, 18147166, 27068692, 40203306, 59459998, 87587428, 128522850
Offset: 0

Author

Vladeta Jovovic, Jul 24 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*(j*i), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013
  • Mathematica
    terms = 40;
    CoefficientList[Product[1 + k x^k/(1 - x^k)^2, {k, 1, terms}] + O[x]^terms, x] (* Jean-François Alcover, Nov 12 2020 *)