A006906 a(n) is the sum of products of terms in all partitions of n.
1, 1, 3, 6, 14, 25, 56, 97, 198, 354, 672, 1170, 2207, 3762, 6786, 11675, 20524, 34636, 60258, 100580, 171894, 285820, 480497, 791316, 1321346, 2156830, 3557353, 5783660, 9452658, 15250216, 24771526, 39713788, 64011924, 102199026, 163583054, 259745051
Offset: 0
Examples
Partitions of 0 are {()} whose products are {1} whose sum is 1. Partitions of 1 are {(1)} whose products are {1} whose sum is 1. Partitions of 2 are {(2),(1,1)} whose products are {2,1} whose sum is 3. Partitions of 3 are 3 => {(3),(2,1),(1,1,1)} whose products are {3,2,1} whose sum is 6. Partitions of 4 are {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} whose products are {4,3,4,2,1} whose sum is 14.
References
- G. Labelle, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..6000 (first 1001 terms from T. D. Noe)
- Atreya Chatterjee, Emergent gravity from patterns in natural numbers, arXiv:2006.01170 [gr-qc], 2020.
- Dean Hickerson, Comments on A006906
- Robert Schneider and Andrew V. Sills, The product of parts or 'norm' of a partition, #A13 INTEGERS 20A (2020), Theorem 7, p. 4.
Crossrefs
Programs
-
Haskell
a006906 n = p 1 n 1 where p _ 0 s = s p k m s | m
Reinhard Zumkeller, Dec 07 2011 -
Maple
A006906 := proc(n) option remember; if n = 0 then 1; else add( A078308(k)*procname(n-k),k=1..n)/n ; end if; end proc: # R. J. Mathar, Dec 14 2011 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +add(b(n-i*j, i-1)*(i^j), j=1..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..40); # Alois P. Heinz, Feb 25 2013
-
Mathematica
(* a[n,k]=sum of products of partitions of n into parts <= k *) a[0,0]=1; a[n_,0]:=0; a[n_,k_]:=If[k>n, a[n,n], a[n,k] = a[n,k-1] + k a[n-k,k] ]; a[n_]:=a[n,n] (* Dean Hickerson, Aug 19 2007 *) Table[Total[Times@@@IntegerPartitions[n]],{n,0,35}] (* Harvey P. Dale, Jan 14 2013 *) nmax = 40; CoefficientList[Series[Product[1/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *) nmax = 40; CoefficientList[Series[Exp[Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
Formula
The limit of a(n+3)/a(n) is 3. However, the limit of a(n+1)/a(n) does not exist. In fact, the sequence {a(n+1)/a(n)} has three limit points, which are about 1.4422447, 1.4422491 and 1.4422549. (See the Links entry.) - Dean Hickerson, Aug 19 2007
a(n) ~ c(n mod 3) 3^(n/3), where c(0)=97923.26765718877..., c(1)=97922.93936857030... and c(2)=97922.90546334208... - Dean Hickerson, Aug 19 2007
G.f.: 1 / Product_{k>=1} (1-k*x^k).
G.f.: 1 + Sum_{n>=1} n*x^n / Product_{k=1..n} (1-k*x^k) = 1 + Sum_{n>=1} n*x^n / Product_{k>=n} (1-k*x^k). - Joerg Arndt, Mar 23 2011
a(n) = (1/n)*Sum_{k=1..n} A078308(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
O.g.f.: exp( Sum_{n>=1} Sum_{k>=1} k^n * x^(n*k) / n ). - Paul D. Hanna, Sep 18 2017
O.g.f.: exp( Sum_{n>=1} Sum_{k=1..n} A008292(n,k)*x^(n*k)/(n*(1-x^n)^(n+1)) ), where A008292 is the Eulerian numbers. - Paul D. Hanna, Sep 18 2017
Extensions
More terms from Vladeta Jovovic, Oct 04 2001
Edited by N. J. A. Sloane, May 19 2007
Comments