cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Simon Plouffe

Simon Plouffe's wiki page.

Simon Plouffe has authored 1792 sequences. Here are the ten most recent ones:

A381788 Greedy expansion of Pi-3 in a base with place values 1/(10^k-1), k >= 1, using digits {0,1,2,...,8,9,A=10}.

Original entry on oeis.org

1, 3, 0, 1, 7, 8, 5, 0, 1, 4, 6, 6, 5, 9, 4, 7, 1, 5, 1, 9, 5, 6, 1, 3, 4, 8, 9, 3, 4, 2, 2, 7, 5, 2, 2, 9, 0, 3, 8, 6, 2, 8, 1, 1, 5, 8, 3, 5, 3, 1, 1, 9, 8, 2, 3, 5, 2, 0, 8, 9, 4, 1, 8, 2, 4, 8, 6, 3, 1, 2, 5, 9, 1, 2, 9, 1, 5, 5, 5, 0, 6, 9, 6, 8, 0, 7, 7, 9, 7, 4, 0, 9, 8, 2, 8, 5, 7, 4, 1, 9, 5, 5, 7, 5, 2, 8, 3, 1, 1, 0, 8, 8, 5
Offset: 1

Author

Simon Plouffe, Mar 07 2025

Keywords

Comments

From Pontus von Brömssen, Mar 13 2025: (Start)
Since the ratio of successive place values is less than 1/10, a digit A=10 is sometimes needed. For example, if 10*A073668-37/33 < x < 1/9, the expansion of x must have an A at the second position after the radix point (for any choice of digits, not only greedy).
The expansion is not unique without specifying greedy choice of digits. For example, the number 11/1000 can be represented both as 0.010898908982... and (non-greedily) as 0.00A989899171... in this system.
For a random number, the probability that the digit A occurs decreases exponentially with the position in the expansion (with greedy choice of digits), so it seems very unlikely that 10 is a term of this sequence.
(End)

Crossrefs

Programs

  • Maple
    BASEN:= proc(x, b, sgn, k)
    local i, j, v, premier, fin, lll, liste, w, baz;
        baz := evalf(b);
        v := abs(frac(evalf(x)));
        fin := trunc(evalf(Digits/log10(b)));
        lll := [seq(i^k*(baz^i + sgn), i = 1 .. fin)];
        liste := [];
        for i to fin do w := trunc(v*lll[i]); v := v - w/lll[i]; liste := [op(liste), w] end do;
        RETURN(liste)
    end;
    BASEN(Pi-3,10,-1,0);

Formula

Sum_{k>=1} a(k)/(10^k - 1) = Pi - 3.

Extensions

Edited by N. J. A. Sloane, Mar 18 2025

A363271 Vertical sum of n in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 6, 7, 8, 9, 10, 11, 12
Offset: 1

Author

Simon Plouffe, May 24 2023

Keywords

Comments

The Sum_{n>=1} a(n)/10^n = 10/81, it is the vertical sum of each integer. The pattern is easy to see but apparently impossible for a program to find any closed form or recurrence. The sequence is generated by adding each integer with an offset of 1 at each step.
If you sum integers with each term divided by 10^n, at n = 9 there are 2 terms in the column 9 + 1 = 10 which is a(10).
Here is the actual sum:
.100000000000000000000
.020000000000000000000
.003000000000000000000
.000400000000000000000
.000050000000000000000
.000006000000000000000
.000000700000000000000
.000000080000000000000
.000000009000000000000
.000000001000000000000
.000000000110000000000
.000000000012000000000
.000000000001300000000
.000000000000140000000
.000000000000015000000
.000000000000001600000
.000000000000000170000
.000000000000000018000
.000000000000000001900
.000000000000000000200
.000000000000000000021
.000000000000000000002
...
By adding each column we get a(n), which explains why a(9) = 10.

Examples

			The original sequence is 1 2 3 4 5 6 7 8 9 10 11 12 ... but when we sum digit per digit (in base 10) the sequence is not a rational fraction.
		

Crossrefs

Cf. A021085 (10/81), A089400 (binary analog).

Programs

  • Maple
    p:=proc(v) local n, aa, nn, s, k, t;
        aa := v;
        nn := nops(aa);
        s := [seq(1 + aa[k]/10^k,
            k = 1 .. nops(aa))];
        [seq(sum(trunc(10*frac(10^t*s[k])),
            k = 1 .. nops(aa)),
            t = 0 .. nops(aa))]
    end;
    # enter a sequence like a(n) = [1, 2, 3, 4, ...] it will return a sequence r such that sum(r(n)/10^n) is equal to sum(a(n)/10^n).

A345986 Numbers k > 0 such that the k-th power of the Dedekind eta-function is lacunary.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 26
Offset: 1

Author

Simon Plouffe and N. J. A. Sloane, Jul 10 2021, following a suggestion from Francis Sanchez

Keywords

Crossrefs

Cf. A007706.

A344013 a(1)=1; thereafter a(n) = A169639(a(n-1)).

Original entry on oeis.org

1, 35, 125, 157, 206, 148, 197, 293, 333, 286, 302, 177, 246, 245, 236, 230, 178, 244, 275, 295, 342, 274, 326, 247, 253, 281, 285, 293, 333, 286, 302, 177, 246, 245, 236, 230, 178, 244, 275, 295, 342, 274, 326, 247, 253, 281, 285, 293, 333, 286, 302, 177, 246, 245, 236, 230, 178, 244, 275
Offset: 1

Author

Simon Plouffe and N. J. A. Sloane, Jun 10 2021

Keywords

Comments

A French analog of A345126 (British English) and A345157 (US English).
Enters a cycle of length 20 starting from a(8). - Chai Wah Wu, Jun 12 2021

Examples

			1 = un -> 35 = trente-cinq -> 125 -> cent vingt cinq = 157.
		

Crossrefs

Programs

  • Mathematica
    a[1]=1;a[n_]:=a[n]=Total@LetterNumber@StringDelete[IntegerName[a[n-1],"French"],{" ","-"}];Array[a,100] (* Giorgos Kalogeropoulos, Jun 11 2021 *)
  • Python
    from num2words import num2words
    from unidecode import unidecode
    A344013_list = [1]
    for _ in range(10):
        A344013_list.append(sum(ord(s)-96 for s in unidecode(num2words(A344013_list[-1],lang='fr')) if s.isalpha())) # Chai Wah Wu, Jun 11 2021

Extensions

More terms from Chai Wah Wu, Jun 11 2021

A342756 Rounded value of z(n)*prime(n), where z(n) = imaginary part of n-th nontrivial zero of the Zeta function and prime(n) = n-th prime.

Original entry on oeis.org

28, 63, 125, 213, 362, 489, 696, 823, 1104, 1443, 1642, 2089, 2433, 2616, 3060, 3555, 4103, 4396, 5072, 5477, 5792, 6550, 7033, 7781, 8614, 9342, 9749, 10258, 10773, 11449, 13173, 13814, 14682, 15433, 16669, 17262, 18248, 19363, 20269
Offset: 1

Author

Simon Plouffe, Apr 11 2021

Keywords

Comments

Empirical: a(n) ~ 2*Pi*n^2.

Examples

			z(1) = 14.134... and prime(1) = 2, a(1) = round(14.134...*2) = 28.
		

A333127 a(n) = round(c^n) with prime generating constant c = 55237.07504296764715433124... .

Original entry on oeis.org

3051134459, 168535743094673, 9309421488742788613, 514225213380301008078907, 28404296700473737832215645327, 1568970268386786190461323870128523, 86665328455065998699156259015013574567, 4787139251495919953666696192531499395660543, 264427570076016102911609907247384217082828701473
Offset: 2

Author

Simon Plouffe, Mar 08 2020

Keywords

Comments

The exact value of c = 55237.0750429676471543312478152861741726374... has 5000 decimal digits (cf. A335321).

Examples

			{c^2} = 3051134459, {c^3} = 168535743094673, where {c^n} = nearest integer to c^n.
		

Crossrefs

Formula

a(n) = round(c^n), is prime for n = 2..633, with c = 55237.07504296764715433124...

A332308 a(n) = round(c^n), where c is the prime generating constant c = 31622.77671855956934118197870614288... .

Original entry on oeis.org

1000000007, 31622776952311, 1000000014783746303, 31622777186062677745609, 1000000022175619536498921059, 31622777419814234539614807614633, 1000000029567492824611472390607319403, 31622777653565793061482767695810547093627, 1000000036959366167363813218134876470482703123
Offset: 2

Author

Simon Plouffe, Mar 07 2020

Keywords

Comments

The exact value of c = 31622.776718559569341 ... has 4096 decimal digits (cf. A335320).

Examples

			round(c^2) = 1000000007, round(c^3) = 31622776952311.
		

Crossrefs

Formula

a(n) = round(c^n), gives primes for n = 2..388.

Extensions

Edited by Georg Fischer, Jun 27 2020

A306317 Prime numbers generated by the formula a(n) = round(2^(d^n)), where d is the real constant 1.30076870414817691055252567828266106688423996320151467218595488...

Original entry on oeis.org

2, 3, 5, 7, 13, 29, 79, 293, 1619, 14947, 269237, 11570443, 1540936027, 893681319109, 3513374197622981, 166491395148719076277, 201072926144898161374940903, 16390008340104365722976984827792343, 320076519482444467256811692239892862140322229, 7781106039755041703318535124896118983796534882794414187099
Offset: 1

Author

Simon Plouffe, Feb 06 2019

Keywords

Comments

The exponent d = 1.3007687... is the smallest found.

Crossrefs

Programs

  • Maple
    # Computes the values according to the formula, v = 2..., e = 1.30076870414817691055252567828266106688423996320151467218595488..., m the # number of terms. Returns the real and the rounded values (primes). In this case 23 terms will be generated
    val := proc(s, e, m)
    local ll, v, n, kk;
        v := s;
        ll := [];
        for n to m do
            v := v^e; ll := [op(ll), v]
        end do;
        return [ll, map(round, ll)]
    end;

Formula

a(n) = round(2^(d^n)), where d is a real constant starting 1.30076870414817691055252567828266106688423996320151467218595488...

A323065 Prime numbers generated by the formula a(n) = round(c(n)), where c(n) = c(n-1)^d for n >= 2 starting with c(1) = C. C and d are the real constants given below.

Original entry on oeis.org

3, 5, 7, 11, 19, 41, 103, 331, 1423, 8819, 86477, 1504949, 53691233, 4703173021, 1267699542037, 1394588856899951, 8916055416478425247
Offset: 1

Author

Simon Plouffe, Jan 20 2019

Keywords

Comments

C = 3.346835535932430816866371614510056305833213572055338155233562507
and exponent
d = 1.251295195638613270470338478487766898374146819139632632235793814.

Examples

			c(1) = 3.3468, a(1) = 3; c(2) = 4.53390554, a(2) = 5; c(3) = 6.6288905, a(3) = 7; ...; c(n) = c(n-1)^d and a(n) = {c(n)} is the value rounded to the nearest integer.
		

Crossrefs

Cf. A323176.

Programs

  • Maple
    # Computes the values according to the formula, s = 3.34683553..., d = 1.2512951, m the number of terms. Returns the real and the rounded values (primes).
    val := proc(s, d, m)
    local ll, v, n;
        v := s;
        ll := [v];
        for n to m-1 do
            v := v^d; ll := [op(ll), v]
        end do;
        return [ll, map(round, ll)]
    end:

A323611 Prime numbers generated by the formula a(n) = round(c(n)), where c(n) = c(n-1)^(3/2) for n >= 2 starting with c(1) = C and C the real constant given below.

Original entry on oeis.org

2, 3, 5, 11, 37, 223, 3331, 192271, 84308429, 774116799347, 681098209317971743, 562101323304225290104514179, 13326678220145859782825116625722145759009, 1538448162271607869601834587431948506238982765193425993274489
Offset: 1

Author

Simon Plouffe, Jan 20 2019

Keywords

Comments

C = 2.038239154782068767463490862609548251448624778443173613879675732.

Examples

			c(1) = 2.038239154782068, c(2) = 2.9099311279, c(3) = 4.96391190457, c(4) = 11.05951540, ... so a(1) = {c(1)} = 2, a(2) = {c(2)} = 3, a(3) = {c(3)} = 5, ...
c(n) = c(n-1)^(3/2) and a(n) = {c(n)} is the value rounded to the nearest integer.
		

Crossrefs

Programs

  • Maple
    # Computes the values according to the formula, c = 2.03823915478..., e = 3/2, m the number of terms. Returns the real and the rounded values (primes).
    val := proc(c, e, m)
    local ll, v, n;
        v := c;
        ll := [v];
        for n to m-1 do
            v := v^e; ll := [op(ll), v]
        end do;
        return [ll, map(round, ll)]
    end: