A387005 Number of free (d,2)-polyominoids of size n in arbitrary dimension d.
1, 2, 12, 103
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Pontus von Brömssen's wiki page.
Pontus von Brömssen has authored 688 sequences. Here are the ten most recent ones:
Triangle begins: n\d | 2 3 4 5 6 7 8 9 10 11 ----+------------------------------------------------------------------------- 1 | 1 2 | 2 12 3 | 6 140 320 4 | 19 1554 10368 13520 5 | 63 17622 265344 892864 786432 6 | 216 206747 6390484 41998840 89389920 58383808 7 | 760 2503578 152166240 1749529040 6773387520 ? ? 8 | 2725 31117536 3644734836 69246650605 ? ? ? ? 9 | 9910 394953243 88344741448 ? ? ? ? ? ? 10 | 36446 5098388985 ? ? ? ? ? ? ? ?
Triangle begins: n\d| 2 3 4 5 ---+----------- 1 | 1 2 | 1 1 3 | 2 7 3 4 | 5 49 41 8
Triangle begins: n\d| 2 3 4 5 ---+------------ 1 | 1 2 | 1 2 3 | 2 9 12 4 | 5 54 95 103
a(3) = 70, because the 3 primes 3, 5, and 7 all occur A385652(70) = 10 times (the maximum) as the greatest prime factor of the numbers 2..70, and for earlier intervals there is never a tie between 3 numbers. a(4) = 2626355, because the 4 primes 73, 83, 109, and 113 all occur A385652(2626355) = 7634 times (the maximum) as the greatest prime factor of the numbers 2..2626355, and for earlier intervals there is never a tie between 4 numbers.
gpf[n_]:=FactorInteger[n][[-1,1]];a[n_]:=Module[{k=1},Until[Length[Commonest[gpf/@Range[2,k]]]==n,k++];k] (* James C. McMahon, Jul 20 2025 *)
gpf(n) = if (n==1,1, vecmax(factor(n)[,1])); \\ A006530 f(n) = my(v=vector(n, k, gpf(k)), s=Set(v)); vecmax(apply(x->#x, vector(#s, i, select(x->(x==s[i]), v)))); \\ A385652 a(n) = my(k=2); while (f(k) !=n, k++); gpf(k); \\ Michel Marcus, Jul 06 2025
gpf(n) = if (n==1,1, vecmax(factor(n)[,1])); \\ A006530 f(n) = my(v=vector(n, k, gpf(k)), s=Set(v)); vecmax(apply(x->#x, vector(#s, i, select(x->(x==s[i]), v)))); \\ A385652 a(n) = my(k=2); while (f(k) !=n, k++); k; \\ Michel Marcus, Jul 06 2025
| | cumulative frequencies for gpf's | n | gpf | 2 3 5 7 11 13 17 19 23 | a(n) ---+-----+----------------------------------+----- 2 | 2 | 1 0 0 0 0 0 0 0 0 | 1 3 | 3 | 1 1 0 0 0 0 0 0 0 | 1 4 | 2 | 2 1 0 0 0 0 0 0 0 | 2 5 | 5 | 2 1 1 0 0 0 0 0 0 | 2 6 | 3 | 2 2 1 0 0 0 0 0 0 | 2 7 | 7 | 2 2 1 1 0 0 0 0 0 | 2 8 | 2 | 3 2 1 1 0 0 0 0 0 | 3 9 | 3 | 3 3 1 1 0 0 0 0 0 | 3 10 | 5 | 3 3 2 1 0 0 0 0 0 | 3 11 | 11 | 3 3 2 1 1 0 0 0 0 | 3 12 | 3 | 3 4 2 1 1 0 0 0 0 | 4 13 | 13 | 3 4 2 1 1 1 0 0 0 | 4 14 | 7 | 3 4 2 2 1 1 0 0 0 | 4 15 | 5 | 3 4 3 2 1 1 0 0 0 | 4 16 | 2 | 4 4 3 2 1 1 0 0 0 | 4 17 | 17 | 4 4 3 2 1 1 1 0 0 | 4 18 | 3 | 4 5 3 2 1 1 1 0 0 | 5 19 | 19 | 4 5 3 2 1 1 1 1 0 | 5 20 | 5 | 4 5 4 2 1 1 1 1 0 | 5 21 | 7 | 4 5 4 3 1 1 1 1 0 | 5 22 | 11 | 4 5 4 3 2 1 1 1 0 | 5 23 | 23 | 4 5 4 3 2 1 1 1 1 | 5 24 | 3 | 4 6 4 3 2 1 1 1 1 | 6
gpf(n) = if (n==1,1, vecmax(factor(n)[,1])); \\ A006530 a(n) = my(v=vector(n, k, gpf(k)), s=Set(v)); vecmax(apply(x->#x, vector(#s, i, select(x->(x==s[i]), v)))); \\ Michel Marcus, Jul 06 2025
from collections import Counter from itertools import count from sympy import factorint def A385652_generator(): c = Counter() M = 0 for n in count(2): gpf = max(factorint(n)) c[gpf] += 1 if c[gpf] > M: M += 1 yield M
Table begins: n\d| 1 2 3 4 5 6 7 8 ---+--------------------------------------------------------------------- 1 | 1 2 3 4 5 6 7 8 2 | 1 6 15 28 45 66 91 120 3 | 1 22 95 252 525 946 1547 2360 4 | 1 88 681 2600 7065 15696 30513 53936 5 | 1 372 5277 29248 104097 285828 661549 1356384 6 | 1 1628 43086 349132 1632915 5551480 15314936 36449288 7 | 1 7312 365313 4351944 26817465 113045832 372033993 1028383408 8 | 1 33466 3186444 56062681 456137580 2386821009 9377038237 30118187174
Triangle begins: n\d| 1 2 3 4 5 6 ---+-------------------------- 1 | 1 2 | 1 2 3 | 1 5 7 4 | 1 16 28 31 5 | 1 55 160 199 205 6 | 1 222 1085 1651 1768 1779
Comments