A385582 Triangle read by rows: T(n,d) is the number of fixed, properly d-dimensional polysticks of size n.
1, 1, 4, 1, 20, 32, 1, 86, 420, 400, 1, 370, 4164, 10368, 6912, 1, 1626, 38205, 186552, 301840, 153664, 1, 7310, 343380, 2934560, 8637760, 10223616, 4194304, 1, 33464, 3086049, 43517697, 207353960, 427708848, 396809280, 136048896
Offset: 1
Examples
Triangle begins: n\d| 1 2 3 4 5 6 7 8 ---+----------------------------------------------------------------- 1 | 1 2 | 1 4 3 | 1 20 32 4 | 1 86 420 400 5 | 1 370 4164 10368 6912 6 | 1 1626 38205 186552 301840 153664 7 | 1 7310 343380 2934560 8637760 10223616 4194304 8 | 1 33464 3086049 43517697 207353960 427708848 396809280 136048896
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..78 (first 12 rows)
- Stephan Mertens and Cristopher Moore, Series expansion of the percolation threshold on hypercubic lattices, J. Phys. A: Math. Theor., 51 (2018), 475001; arXiv:1805.02701 [cond-mat.stat-mech], 2018.
- Index entries for sequences related to polyominoes.
Formula
T(n,d) = Sum_{k=1..d} (-1)^(d-k)*binomial(d,k)*A385581(n,k).
Comments