cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387002 Triangle read by rows: T(n,d) is the number of fixed, properly d-dimensional (d,2)-polyominoids of size n, 2 <= d <= n+1.

Original entry on oeis.org

1, 2, 12, 6, 140, 320, 19, 1554, 10368, 13520, 63, 17622, 265344, 892864, 786432, 216, 206747, 6390484, 41998840, 89389920, 58383808, 760, 2503578, 152166240, 1749529040, 6773387520
Offset: 1

Views

Author

Pontus von Brömssen, Aug 14 2025

Keywords

Comments

A (d,2)-polyominoid consists of unit square cells with integer coordinates in the d-dimensional grid, where two cells are connected if they share an edge. The polyominoid is properly d-dimensional if it is not contained in a (d-1)-dimensional affine subspace.

Examples

			Triangle begins:
  n\d |     2          3           4           5          6        7  8  9 10 11
  ----+-------------------------------------------------------------------------
   1  |     1
   2  |     2         12
   3  |     6        140         320
   4  |    19       1554       10368       13520
   5  |    63      17622      265344      892864     786432
   6  |   216     206747     6390484    41998840   89389920 58383808
   7  |   760    2503578   152166240  1749529040 6773387520        ?  ?
   8  |  2725   31117536  3644734836 69246650605          ?        ?  ?  ?
   9  |  9910  394953243 88344741448           ?          ?        ?  ?  ?  ?
  10  | 36446 5098388985           ?           ?          ?        ?  ?  ?  ?  ?
		

Crossrefs

Cf. A001168 (column d=2), A195739 (polyominoes), A385582 (polysticks), A385715, A387004 (free).

Formula

T(n,d) = Sum_{k=2..d} (-1)^(d-k)*binomial(d,k)*A385715(k,n), i.e., the n-th row is the inverse binomial transform of the n-th column of A385715 (with the convention that T(n,d) = A385715(d,n) = 0 when d <= 1).

A387003 Triangle read by rows: T(n,d) is the number of free (d,2)-polyominoids of size n, 2 <= d <= n+1.

Original entry on oeis.org

1, 1, 2, 2, 9, 12, 5, 54, 95, 103
Offset: 1

Views

Author

Pontus von Brömssen, Aug 14 2025

Keywords

Comments

If d > n+1, there are T(n,n+1) such polyominoids. The triangle only includes the values for d <= n+1.

Examples

			Triangle begins:
  n\d| 2  3  4   5
  ---+------------
  1  | 1
  2  | 1  2
  3  | 2  9 12
  4  | 5 54 95 103
		

Crossrefs

Columns: A000105 (d=2), A075679 (d=3), A366334 (d=4).
Cf. A330891 (polyominoes), A385583 (polysticks), A385715 (fixed), A387002, A387004, A387005 (main diagonal).

Formula

T(n,d) = Sum_{k=1..d} A387004(n,k).
Showing 1-2 of 2 results.