cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385652 Maximum frequency of gpf(k) for 2 <= k <= n, where gpf(k) = A006530(k) is the greatest prime factor of k.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12
Offset: 2

Views

Author

Pontus von Brömssen, Jul 06 2025

Keywords

Comments

The prime p is popular on the interval [2,n] if it is the greatest prime factor of a(n) numbers in that interval; see A385503.

Examples

			     |     | cumulative frequencies for gpf's |
   n | gpf |    2  3  5  7 11 13 17 19 23     | a(n)
  ---+-----+----------------------------------+-----
   2 |   2 |    1  0  0  0  0  0  0  0  0     |  1
   3 |   3 |    1  1  0  0  0  0  0  0  0     |  1
   4 |   2 |    2  1  0  0  0  0  0  0  0     |  2
   5 |   5 |    2  1  1  0  0  0  0  0  0     |  2
   6 |   3 |    2  2  1  0  0  0  0  0  0     |  2
   7 |   7 |    2  2  1  1  0  0  0  0  0     |  2
   8 |   2 |    3  2  1  1  0  0  0  0  0     |  3
   9 |   3 |    3  3  1  1  0  0  0  0  0     |  3
  10 |   5 |    3  3  2  1  0  0  0  0  0     |  3
  11 |  11 |    3  3  2  1  1  0  0  0  0     |  3
  12 |   3 |    3  4  2  1  1  0  0  0  0     |  4
  13 |  13 |    3  4  2  1  1  1  0  0  0     |  4
  14 |   7 |    3  4  2  2  1  1  0  0  0     |  4
  15 |   5 |    3  4  3  2  1  1  0  0  0     |  4
  16 |   2 |    4  4  3  2  1  1  0  0  0     |  4
  17 |  17 |    4  4  3  2  1  1  1  0  0     |  4
  18 |   3 |    4  5  3  2  1  1  1  0  0     |  5
  19 |  19 |    4  5  3  2  1  1  1  1  0     |  5
  20 |   5 |    4  5  4  2  1  1  1  1  0     |  5
  21 |   7 |    4  5  4  3  1  1  1  1  0     |  5
  22 |  11 |    4  5  4  3  2  1  1  1  0     |  5
  23 |  23 |    4  5  4  3  2  1  1  1  1     |  5
  24 |   3 |    4  6  4  3  2  1  1  1  1     |  6
		

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1,1, vecmax(factor(n)[,1])); \\ A006530
    a(n) = my(v=vector(n, k, gpf(k)), s=Set(v)); vecmax(apply(x->#x, vector(#s, i, select(x->(x==s[i]), v)))); \\ Michel Marcus, Jul 06 2025
  • Python
    from collections import Counter
    from itertools import count
    from sympy import factorint
    def A385652_generator():
        c = Counter()
        M = 0
        for n in count(2):
            gpf = max(factorint(n))
            c[gpf] += 1
            if c[gpf] > M: M += 1
            yield M
    

Formula

a(n) = max_{k=2..n} A078899(k).

A385653 Least k such that A385652(k) = n.

Original entry on oeis.org

2, 4, 8, 12, 18, 24, 27, 36, 48, 54, 72, 80, 90, 100, 120, 125, 135, 150, 160, 180, 196, 210, 224, 245, 252, 280, 294, 315, 336, 343, 350, 378, 392, 420, 441, 448, 490, 504, 525, 560, 567, 588, 630, 672, 686, 700, 735, 756, 784, 840, 875, 882, 896, 945, 980
Offset: 1

Views

Author

Pontus von Brömssen, Jul 06 2025

Keywords

Comments

A385654(n) is uniquely popular on the interval [2,a(n)]; see A289662.
Equivalently, a(n) is the least k >= 2 such that A078899(k) = n.

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1,1, vecmax(factor(n)[,1])); \\ A006530
    f(n) = my(v=vector(n, k, gpf(k)), s=Set(v)); vecmax(apply(x->#x, vector(#s, i, select(x->(x==s[i]), v)))); \\ A385652
    a(n) = my(k=2); while (f(k) !=n, k++); k; \\ Michel Marcus, Jul 06 2025
Showing 1-2 of 2 results.