cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paul D. Hanna

Paul D. Hanna's wiki page.

Paul D. Hanna has authored 9353 sequences. Here are the ten most recent ones:

A386659 G.f. A(x) satisfies A(x^3) = A(x)^3/(1 + 3*A(x)).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, -1, 1, 0, -2, 3, 0, -6, 10, 0, -22, 33, 0, -79, 122, 0, -299, 472, 0, -1179, 1871, 0, -4754, 7601, 0, -19553, 31449, 0, -81720, 132020, 0, -345949, 561034, 0, -1480475, 2408712, 0, -6394189, 10431950, 0, -27835400, 45521500, 0, -122008360, 199948108, 0, -538016031, 883331845, 0
Offset: 1

Author

Paul D. Hanna, Aug 28 2025

Keywords

Comments

Compare to: F(x^2) = F(x)^2/(1 + 2*F(x)) holds when F(x) = x/(1-x).

Examples

			G.f.: A(x) = x + x^2 + x^5 - x^7 + x^8 - 2*x^10 + 3*x^11 - 6*x^13 + 10*x^14 - 22*x^16 + 33*x^17 - 79*x^19 + 122*x^20 - 299*x^22 + 472*x^23 - 1179*x^25 + 1871*x^26 - 4754*x^28 + ...
where A(x^3) = A(x)^3/(1 + 3*A(x)).
RELATED SERIES.
The series trisections are A(x) = T1(x) + T2(x) + T3(x), with T3(x) = 0 and
T1(x) = x - x^7 - 2*x^10 - 6*x^13 - 22*x^16 - 79*x^19 - 299*x^22 - 1179*x^25 - 4754*x^28 - 19553*x^31 - 81720*x^34 - 345949*x^37 - 1480475*x^40 + ...
T2(x) = x^2 + x^5 + x^8 + 3*x^11 + 10*x^14 + 33*x^17 + 122*x^20 + 472*x^23 + 1871*x^26 + 7601*x^29 + 31449*x^32 + 132020*x^35 + 561034*x^38 + 2408712*x^41 + ...
where T1(x)*T2(x) = A(x^3) and
T2(x)/T1(x) = x + x^4 + 2*x^7 + 6*x^10 + 20*x^13 + 71*x^16 + 267*x^19 + 1041*x^22 + 4168*x^25 + 17047*x^28 + ... + A370446(n)*x^(3*n-2) + ...
The cube of A(x) also has interesting series trisections.
A(x)^3 = x^3 + 3*x^4 + 3*x^5 + x^6 + 3*x^7 + 6*x^8 - 3*x^10 + 6*x^11 - 9*x^13 + 12*x^14 + x^15 - 21*x^16 + 42*x^17 - 84*x^19 + 132*x^20 - x^21 - 309*x^22 + 465*x^23 + x^24 + ...
where cubic trisections, defined by A(x)^3 = C1(x) + C2(x) + C3(x), obey
C3(x) = A(x^3),
C1(x)*C2(x) = 9*A(x^3)^3,
C2(x)/C1(x) = T2(x)/T1(x) = x + x^4 + 2*x^7 + 6*x^10 + 20*x^13 + 71*x^16 + 267*x^19 + 1041*x^22 + ... + A370446(n)*x^(3*n-2) + ...
The cubic trisections begin
C1(x) = 3*x^4 + 3*x^7 - 3*x^10 - 9*x^13 - 21*x^16 - 84*x^19 - 309*x^22 - 1137*x^25 - 4449*x^28 - 17868*x^31 - 73137*x^34 - 304662*x^37 - 1286388*x^40 - ...
C2(x) = 3*x^5 + 6*x^8 + 6*x^11 + 12*x^14 + 42*x^17 + 132*x^20 + 465*x^23 + 1791*x^26 + 7059*x^29 + 28503*x^32 + 117498*x^35 + 491757*x^38 + 2084481*x^41 + ...
C3(x) = x^3 + x^6 + x^15 - x^21 + x^24 - 2*x^30 + 3*x^33 - 6*x^39 + 10*x^42 - 22*x^48 + 33*x^51 + ... + a(n)*x^(3*n) + ...
SPECIFIC VALUES.
A(r) = 1 and A(r^3) = 1/4 at r = 0.591403538949431343296352603332310036448543950513103383318429...
A(t) = 4/5 and A(t^3) = 64/425 at t = 0.510303761967726164722767738473741580674762344121899...
A(t) = 3/4 and A(t^3) = 27/208 at t = 0.488075704869119285515484767956113771965332978558674...
A(t) = 2/3 and A(t^3) = 8/81 at t = 0.4490656139430636435247188510711544862057647445925319...
A(t) = 1/2 and A(t^3) = 1/20 at t = 0.3627219904933172573963798296372201737748692616169519...
A(t) = 1/3 and A(t^3) = 1/54 at t = 0.2629820536068200748031820994203659473004640287705972...
A(t) = 1/4 and A(t^3) = 1/112 at t = r^3 = 0.206848205250953970652722994332475597057157203674066...
A(t) = 1/5 and A(t^3) = 1/200 at t = 0.170714946526968286919515308872119424149511936479752...
A(1/2) = 0.7765855959847885627987696942587081429921785817514493... where A(1/8) = A(1/2)^3/(1 + 3*A(1/2)).
A(1/3) = 0.4482359377100401660271468423571796863698018480508060... where A(1/27) = A(1/3)^3/(1 + 3*A(1/3)).
A(1/4) = 0.3134295384970268001359461486249333443235800254018265... where A(1/64) = A(1/4)^3/(1 + 3*A(1/4)).
A(1/8) = 0.1406550988235082384593126468031209848166962450443705...
A(1/27) = 0.038408848749171730717291402355749106248762924579924...
A(1/64) = 0.015869141556098751959628853939856842544839850661716...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[0,1]); for(i=1,n, V = concat(V,0); A = Ser(V);
    V[#V] = polcoef( subst(A,x, x^3) - A^3/(1 + 3*A), #V+1)/3; ); V[n+1] }
    for(n=1,54,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n along with series trisections T1(x) = Sum_{n>=0} a(3*n+1)*x^(3*n+1) and T2(x) = Sum_{n>=0} a(3*n+2)*x^(3*n+2) satisfy the following formulas.
(1) A(x^3) = A(x)^3/(1 + 3*A(x)).
(2) a(3*n) = 0 for n >= 1.
(3) T1(x)*T2(x) = A(x^3).
(4) T2(x)/T1(x) = G(x^3)/x^2 where g.f. G(x) of A370446 satisfies G(x)^3 + x^4/G(x)^3 = G(x^3) + x^4/G(x^3) - 3*x^2.
(5) A(-F(-x)) = x where g.f. F(x) of A264228 satisfies F(x)^3 = F( x^3/(1-3*x) ).

A386665 G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^n - A(x)^(-1/2) )^n / ( 2 - (1+x)^n * A(x)^(-1/2) )^(n+1).

Original entry on oeis.org

1, 1, 8, 90, 1336, 24406, 530234, 13410942, 388841734, 12762735148, 469004980720, 19105730068460, 855146084504046, 41724450644602328, 2204075802189470532, 125300401263988607716, 7626356269363721248332, 494723229572772238087966, 34070289390944902842701094, 2482276670026891882801017812
Offset: 0

Author

Paul D. Hanna, Aug 29 2025

Keywords

Comments

It appears that lim_{n->oo} ( a(n+1)/a(n) )/(n+1) exists and is near 4.

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 90*x^3 + 1336*x^4 + 24406*x^5 + 530234*x^6 + 13410942*x^7 + 388841734*x^8 + 12762735148*x^9 + 469004980720*x^10 + ...
RELATED SERIES.
A(x)^(1/2) = 1 + 2*(x/4) + 62*(x/4)^2 + 2756*(x/4)^3 + 163574*(x/4)^4 + 11997852*(x/4)^5 + 1047984172*(x/4)^6 + 106571791752*(x/4)^7 + 12417003030694*(x/4)^8 + ...
A(x)^(-1/2) = 1 - 2*(x/4) - 58*(x/4)^2 - 2516*(x/4)^3 - 149434*(x/4)^4 - 11055996*(x/4)^5 - 976190180*(x/4)^6 - 100318703592*(x/4)^7 - 11796814729146*(x/4)^8 - ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1, 1]); for(i=1, n, A=concat(A, 0); A = Vec( sum(m=0, #A, ( (1+x)^m - Ser(A)^(-1/2) )^m / (2 - (1+x)^m*Ser(A)^(-1/2))^(m+1) ) ) ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n along with B(x) = A(x)^(1/2) satisfies the following formulas.
(1) A(x) = Sum_{n>=0} ( (1+x)^n - 1/B(x) )^n / ( 2 - (1+x)^n/B(x) )^(n+1).
(2) A(x) = Sum_{n>=0} ( (1+x)^n + 1/B(x) )^n / ( 2 + (1+x)^n/B(x) )^(n+1).
(3) B(x) = Sum_{n>=0} ( (1+x)^n*B(x) - 1 )^n / ( 2*B(x) - (1+x)^n )^(n+1).
(4) B(x) = Sum_{n>=0} ( (1+x)^n*B(x) + 1 )^n / ( 2*B(x) + (1+x)^n )^(n+1).

A386656 E.g.f.: Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 4, 98, 21901, 45203076, 864855654349, 151334120052647134, 240066304912259832915171, 3437872829353908000927273009224, 443629285010311848968435132228644809721, 515464807017361539745514781011221080738833641050
Offset: 0

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [4, 3, 2, 1, 0, 1] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 3 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 4*x + 98*x^2/2! + 21901*x^3/3! + 45203076*x^4/4! + 864855654349*x^5/5! + 151334120052647134*x^6/6! + ...
where A(x) = Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386655 (q=2), A386657 (q=4), A386658 (q=5), A386648.

Programs

  • PARI
    {a(n) = sum(k=0,n, binomial(n,k) * 3^(k*(k+1)) * (3^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n, (3^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 3^(n^2) * exp( LambertW(x) * 3^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 3^(n^2) * (x/LambertW(x))^(3^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 3^(n*(n+1)) * x^n/n! * Sum_{k>=0} (3^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(k*(k+1)) * (3^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n*k) * (1 - (n-k)/3^k)^(n-k-1).

A386657 E.g.f.: Sum_{n>=0} (4^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 5, 287, 274532, 4362420261, 1131407873777920, 4729288202285254702123, 317048074495318899943286044736, 340323907513179399929311813628104334217, 5846207259092593125133941613189798019292422881280
Offset: 0

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [1, 2, 3, 2, 3, 4] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 4 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 5*x + 287*x^2/2! + 274532*x^3/3! + 4362420261*x^4/4! + 1131407873777920*x^5/5! + 4729288202285254702123*x^6/6! + ...
where A(x) = Sum_{n>=0} (4^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386655 (q=2), A386656 (q=3), A386658 (q=5), A386648.

Programs

  • PARI
    {a(n) = sum(k=0,n, binomial(n,k) * 4^(k*(k+1)) * (4^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n, (4^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (4^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 4^(n^2) * exp( LambertW(x) * 4^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 4^(n^2) * (x/LambertW(x))^(4^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 4^(n*(n+1)) * x^n/n! * Sum_{k>=0} (4^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 4^(k*(k+1)) * (4^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 4^(n*k) * (1 - (n-k)/4^k)^(n-k-1).

A386658 E.g.f.: Sum_{n>=0} (5^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 6, 674, 2000229, 153566609748, 298500361403750381, 14557504055095871311168750, 17765160070810827062009088144577731, 542112188572462226990932242595876785196798632, 413592212104548192173492724488185195719396124921931347641
Offset: 0

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [4, 3, 0, 3, 0, 5] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 5 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 6*x + 674*x^2/2! + 2000229*x^3/3! + 153566609748*x^4/4! + 298500361403750381*x^5/5! + 14557504055095871311168750*x^6/6! + ...
where A(x) = Sum_{n>=0} (5^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386655 (q=2), A386656 (q=3), A386657 (q=4), A386648.

Programs

  • PARI
    {a(n,q=5) = sum(k=0,n, binomial(n,k) * q^(k*(k+1)) * (q^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n,q=5) = my(A = sum(m=0, n, (q^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (5^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 5^(n^2) * exp( LambertW(x) * 5^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 5^(n^2) * (x/LambertW(x))^(5^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 5^(n*(n+1)) * x^n/n! * Sum_{k>=0} (5^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 5^(k*(k+1)) * (5^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 5^(n*k) * (1 - (n-k)/5^k)^(n-k-1).

A386655 E.g.f.: Sum_{n>=0} (2^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 3, 23, 708, 82677, 39043808, 75384175459, 594418947869568, 19030890530555146281, 2460681168464503636482816, 1280084112577610436036966382815, 2672769582069469500760580570122074560, 22366167041278673568399013569832022272725469
Offset: 0

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [1, 0, 3, 0, 3, 2] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 2 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 3*x + 23*x^2/2! + 708*x^3/3! + 82677*x^4/4! + 39043808*x^5/5! + 75384175459*x^6/6! + 594418947869568*x^7/7! + ...
where A(x) = Sum_{n>=0} (2^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386656 (q=3), A386657 (q=4), A386658 (q=5), A386648.

Programs

  • Mathematica
    nmax = 15; Join[{1}, Rest[CoefficientList[Series[Sum[(2^k*x + LambertW[x])^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!]] (* Vaclav Kotesovec, Aug 23 2025 *)
  • PARI
    {a(n) = sum(k=0,n, binomial(n,k) * 2^(k*(k+1)) * (2^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n, (2^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (2^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 2^(n^2) * exp( LambertW(x) * 2^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 2^(n^2) * (x/LambertW(x))^(2^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 2^(n*(n+1)) * x^n/n! * Sum_{k>=0} (2^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(k*(k+1)) * (2^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n*k) * (1 - (n-k)/2^k)^(n-k-1).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Aug 23 2025

A385915 G.f. satisfies A(x) = -(A(x^3) + A(x^4)) / A(-x^2).

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 2, 2, 4, 7, 4, 11, 4, 12, 8, 19, 14, 29, 23, 47, 32, 74, 44, 110, 83, 164, 135, 276, 196, 439, 304, 663, 489, 1051, 768, 1656, 1192, 2581, 1856, 4046, 2888, 6317, 4547, 9848, 7130, 15440, 11106, 24186, 17377, 37729, 27231, 59062, 42614, 92484, 66682, 144664, 104328, 226371, 163174, 354230
Offset: 1

Author

Paul D. Hanna, Aug 21 2025

Keywords

Comments

a(n) ~ c*d^n, where d = 1.25088706673007476636567388431275493535326837186841972110953..., and c = 0.52020182784673907154955829274303103782236665499908622597516... if n is even, or c = 0.29984063427406787235208627225075145443391314443990234248956... if n is odd.
Radius of convergence r of g.f. A(x) satisfies A(-r^2) = 0 and A(r^8) = -A(-r^6) where r = 0.79943267989338565357086513413379878916201504254400772696808...

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 2*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 7*x^10 + 4*x^11 + 11*x^12 + 4*x^13 + 12*x^14 + 8*x^15 + 19*x^16 + 14*x^17 + ...
where A(x) = -(A(x^3) + A(x^4)) / A(-x^2).
RELATED SERIES.
A(x^3) + A(x^4) = x^3 + x^4 + x^6 + x^8 + x^9 + 3*x^12 + 2*x^16 + 2*x^18 + 2*x^21 + 4*x^24 + 4*x^27 + 2*x^28 + 7*x^30 + 2*x^32 + 4*x^33 + ...
where A(x^3) + A(x^4) = -A(x)*A(-x^2).
Let B(x) satisfy A(B(x)) = x then
B(x) = x - x^2 + x^3 - 2*x^4 + 8*x^5 - 30*x^6 + 96*x^7 - 293*x^8 + 945*x^9 - 3274*x^10 + 11679*x^11 - 41637*x^12 + 148232*x^13 - 531931*x^14 + 1932116*x^15 + ...
where -x*A(-B(x)^2) = A(B(x)^3) + A(B(x)^4).
SPECIFIC VALUES.
The radius of convergence r satisfies A(-r^2) = 0 and A(r^8) = -A(-r^6) (see values given below).
Also, -A(r^2)*A(-r^4) = A(r^6) - A(-r^6) (verify using values given below).
Pertinent values of the form A(+-r^n) are as follows.
A(r^2) = 2.25568357277545334879615953002039818218094300680461...
A(r^3) = 1.13146138072432881698300088743197078335065492774082...
A(r^4) = 0.71641352894347364220461475600253964520851864903599...
A(r^6) = 0.35711522301431469636315144464034804067241658443788...
A(r^8) = 0.20089620831732266634625988585698697217669751459458...
A(r^9) = 0.15416703344989606171813799820914068395259643759003...
A(r^12) = 0.07313926779510423315813760034344399834214660198599...
A(-r^3) = -0.21985397321719823661610779049573983213878785101569...
A(-r^4) = -0.24738019022989345323378959578383752763617413768043...
A(-r^6) = -0.20089620831732266634625988585698697217669751459458...
A(-r^8) = -0.14204971726158381650811456142497985591356688167501...
A(-r^9) = -0.11730709739793756826670096033821084565818297459544...
A(-r^12) = -0.06376735751196287607391908207491894730221727143981...
...
A(1/2) = 1.076088418495368709480408335347599544142613316488183... where A(1/2) = -(A(1/8) + A(1/16)) / A(-1/4).
A(1/3) = 0.510506935002162613788658566406685686749792809989670... where A(1/3) = -(A(1/27) + A(1/81)) / A(-1/9).
A(1/4) = 0.336602030533756099597633504337162753515731187520108... where A(1/4) = -(A(1/64) + A(1/256)) / A(-1/16).
A(1/8) = 0.143075145485757320815392125895338831436230491529773...
A(1/16) = 0.066681035393498075099284704625662933959506411882465...
A(1/27) = 0.038463353126979968975084607088546188041484601759398...
A(1/64) = 0.015873074561121087188918170893728977022238322582751...
A(1/81) = 0.0125000229473609050663549233903594151185002805142699...
A(1/256) = 0.003921568859375695990570527967100959643728275680027...
A(-1/4) = -0.194924670941580390863804372991458359617278204823944...
A(-1/9) = -0.099828959373735016072583725604101146855506666073829...
A(-1/16) = -0.058807260874534978256299853660358029251607884417895...
...
		

Crossrefs

Cf. A385908.

Programs

  • PARI
    {a(n) = my(A=x+x^2 +x*O(x^n)); for(i=1, #binary(n+1), A = -(subst(A, x, x^3) + subst(A, x, x^4))/subst(A, x, -x^2) +x*O(x^n); ); polcoef(H=A, n)}
    for(n=1,100, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = -(A(x^3) + A(x^4)) / A(-x^2).
(2) -A(-x^2) = (A(x^3) - A(-x^3)) / (A(x) - A(-x)).

A385057 E.g.f. satisfies A(x) = exp( Sum_{n>=1} (Integral A(x)^n dx)^n / n ).

Original entry on oeis.org

1, 1, 3, 18, 173, 2368, 43025, 991070, 28030227, 950818494, 37995695979, 1763496545502, 93967776822477, 5692538342703978, 388772833646583213, 29711642817587338986, 2524166742181661207511, 236956380718244960455206, 24446253183753019240769463, 2757979540962272093582650734, 338712272097534292284500861745
Offset: 0

Author

Paul D. Hanna, Aug 19 2025

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 18*x^3/3! + 173*x^4/4! + 2368*x^5/5! + 43025*x^6/6! + 991070*x^7/7! + 28030227*x^8/8! + 950818494*x^9/9! + 37995695979*x^10/10! + ...
where
A(x) = exp( (Integral A(x) dx) + (Integral A(x)^2 dx)^2/2 + (Integral A(x)^3 dx)^3/3 + (Integral A(x)^4 dx)^4/4 + ... ).
Also,
A'(x) = A(x)^2 + A(x)^3*(Integral A(x)^2 dx) + A(x)^4*(Integral A(x)^3 dx)^2 + A(x)^5*(Integral A(x)^4 dx)^3 + ...
RELATED SERIES.
log(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 104*x^4/4! + 1437*x^5/5! + 26642*x^6/6! + 629127*x^7/7! + ... + A268294(n)*x^n/n! + ...
		

Crossrefs

Cf. A268294 (log).

Programs

  • PARI
    {a(n) = my(A = 1 + x +x*O(x^n)); for(i=0, n+1, A = exp( sum(m=1, n+1, intformal(A^m)^m/m ) ) ); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = exp( Sum_{n>=1} (Integral A(x)^n dx)^n / n ).
(2) A'(x) = Sum_{n>=1} A(x)^(n+1) * (Integral A(x)^n dx)^(n-1).
(3) A(x) = exp(B(x)), where B(x) is the e.g.f. of A268294.

A387041 G.f. A(x) satisfies (A(x) - x^2) o (x - A(x)^2) = x, where operator 'o' denotes composition.

Original entry on oeis.org

1, 2, 6, 41, 348, 3360, 35632, 406104, 4904914, 62180918, 821752456, 11263836924, 159523476148, 2327336091732, 34894961587312, 536671299862721, 8453184479505430, 136188177741639378, 2241801065131393700, 37670062720274627960, 645649822816127973456, 11279877783091509190416
Offset: 1

Author

Paul D. Hanna, Aug 14 2025

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 6*x^3 + 41*x^4 + 348*x^5 + 3360*x^6 + 35632*x^7 + 406104*x^8 + 4904914*x^9 + 62180918*x^10 + ...
where A(x) - x^2 = x + A(A(x) - x^2)^2;
also, A(x - A(x)^2) = x + (x - A(x)^2)^2 = x + x^2 - 2*x*A(x)^2 + A(x)^4.
RELATED SERIES.
A(A(x) - x^2) = x + 3*x^2 + 16*x^3 + 126*x^4 + 1174*x^5 + 12278*x^6 + 139496*x^7 + 1689597*x^8 + 21553566*x^9 + 287191110*x^10 + ...
A(x - A(x)^2) = x + x^2 - 2*x^3 - 7*x^4 - 24*x^5 - 164*x^6 - 1452*x^7 - 14312*x^8 - 153354*x^9 - 1757322*x^10 - ...
A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 106*x^5 + 896*x^6 + 8604*x^7 + 90561*x^8 + 1023592*x^9 + 12258452*x^10 + ...
A(x)^4 = x^4 + 8*x^5 + 48*x^6 + 340*x^7 + 2896*x^8 + 27768*x^9 + 289862*x^10 + ...
		

Programs

  • PARI
    {a(n) = my(V=[0,1]); for(i=1,n, V = concat(V,0); A = Ser(V);
    V[#V] = polcoef(x + (x - A^2)^2 - subst(A,x, x - A^2),#V-1)); polcoef(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x + x^2 + A(A(x) - x^2)^2.
(2) A(x - A(x)^2) = x + (x - A(x)^2)^2.
(3) A(A(x) - x^2) = sqrt( A(x) - x^2 - x ).
(4) A(x)^2 = x - sqrt( A(x - A(x)^2) - x ).
(5) A(x) = x^2 + Series_Reversion(x - A(x)^2).
(6) A(x) = sqrt( x - Series_Reversion(A(x) - x^2) ).
(7) A(x) = x + x^2 + Sum_{n>=0} d^n/dx^n A(x)^(2*n+2) / (n+1)!.
(8) A(x) = x^2 + x*exp( Sum_{n>=0} d^n/dx^n (A(x)^(2*n+2)/x) / (n+1)! ).

A386648 E.g.f. A(x) satisfies 1 = Sum_{n>=0} ( A(x)^n + LambertW(-x) )^n / n!.

Original entry on oeis.org

1, 1, 10, 63, 806, 9485, 161540, 2752155, 59021506, 1310350929, 34127883032, 934203381287, 28851653188814, 942891341070237, 33962521081521076, 1297690184864525043, 53814377103189792794, 2366017294084046632937, 111607600081334119137488, 5565256312162642805357247
Offset: 1

Author

Paul D. Hanna, Aug 12 2025

Keywords

Comments

Conjecture: for n > 6, a(n) (mod 6) equals [2,3,4,3,2,5] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = A(x) with p = LambertW(-x), r = 1.

Examples

			E.g.f.: A(x) = x + x^2/2! + 10*x^3/3! + 63*x^4/4! + 806*x^5/5! + 9485*x^6/6! + 161540*x^7/7! + 2752155*x^8/8! + 59021506*x^9/9! + 1310350929*x^10/10! + ...
where 1 = Sum_{n>=0} ( A(x)^n + LambertW(-x) )^n / n!.
RELATED SERIES.
-LambertW(-x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + 6^5*x^6/6! + 7^6*x^7/7! + ... + n^(n-1)*x^n/n! + ...
where exp(LambertW(-x)) = -x/LambertW(-x);
also, (-x/LambertW(-x))^y = Sum_{k>=0} y*(y - k)^(k-1) * (-x)^k/k!.
		

Crossrefs

Cf. A386645.

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=0, n, A=concat(A, 0);
    A[#A] = polcoeff(1 - sum(m=0, #A, (Ser(A)^m + lambertw(-x +x^3*O(x^n)))^m /m! ), #A-1) ); n!*A[n+1]}
    for(n=1, 20, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) 1 = Sum_{n>=0} ( A(x)^n + LambertW(-x) )^n / n!.
(2) 1 = Sum_{n>=0} A(x)^(n^2) * exp( LambertW(-x) * A(x)^n ) / n!.
(3) 1 = Sum_{n>=0} A(x)^(n^2) * (-x/LambertW(-x))^(A(x)^n) / n!.
(4) 1 = Sum_{n>=0} A(x)^(n*(n+1))/n! * Sum_{k>=0} (A(x)^n - k)^(k-1) * (-x)^k/k!.