A067569 Numbers n such that A000041(n) divides A006906(n).
0, 1, 3, 8, 10
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ... If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
with(combinat): b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i))) end: a:= n-> b(n$2): seq(a(n), n=0..50); # Alois P. Heinz, Nov 26 2015
Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}] (* second program: *) b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
{a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */
The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding products are 6,5,8,6 and their sum is a(6) = 25.
Coefficients(&*[(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
b:= proc(n, i) option remember; local f, g; if n=0 then [1, 1] elif i<1 then [0, 0] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i-1)); [f[1]+g[1], f[2]+g[2]*i] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=0..60); # Alois P. Heinz, Nov 02 2012 # second Maple program: b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, Aug 24 2015
nn=20;CoefficientList[Series[Product[1+i x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Nov 02 2012 *) nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *) (* More efficient program: 10000 terms, 4 minutes, 100000 terms, 6 hours *) nmax = 40; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j+1]] += k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 06 2016 *)
N=66; q='q+O('q^N); Vec(prod(n=1,N, (1+n*q^n) )) \\ Joerg Arndt, Oct 06 2012
G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 5)*x^2 + (1/6)*k*(k^2 + 15*k + 20)*x^3 + (1/24)*k*(k^3 + 30*k^2 + 155*k + 150)*x^4 + (1/120)*k*(k^4 + 50*k^3 + 575*k^2 + 1750*k + 624)*x^5 + ... Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 3, 7, 12, 18, 25, ... 0, 6, 18, 37, 64, 100, ... 0, 14, 49, 114, 219, 375, ... 0, 25, 114, 312, 676, 1276, ...
Table[Function[k, SeriesCoefficient[Product[1/(1 - i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
first(n, k) = my(res = matrix(n, k)); for(u=1, k, my(col = Vec(prod(j=1, n, 1/(1 - j*x^j)^(u-1)) + O(x^n))); for(v=1, n, res[v, u] = col[v])); res \\ Iain Fox, Dec 28 2017
A078308 := proc(n) add( d^(n/d+1),d=numtheory[divisors](n)) ; end proc: seq(A078308(n),n=1..10) ; # R. J. Mathar, Dec 14 2011
Table[CoefficientList[Series[-Log[Product[(1 - k x^k), {k, 1, 60}]], {x, 0, 60}],x][[n + 1]] (n), {n, 1, 60}] (* Benedict W. J. Irwin, Jul 04 2016 *) Table[Total[#^(n/#+1)&/@Divisors[n]],{n,50}] (* Harvey P. Dale, Aug 02 2025 *)
a(n) = sumdiv(n, d, d^(n/d+1)); \\ Michel Marcus, Jul 04 2016
N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-k*x^k)))) \\ Seiichi Manyama, Jun 02 2019
Complement[Range[200], Select[Accumulate[Range[0,200]]/3, IntegerQ]] (* G. C. Greubel, Jun 06 2017 *)
a(n) = my(q,r); [q,r]=divrem(sqrtint(24*n),3); n + q + (r >= bitnegimply(1,q)); \\ Kevin Ryde, Sep 15 2024
from math import isqrt def A090864(n): def f(x): return n+(m:=isqrt(24*x+1)+1)//6+(m-2)//6 kmin, kmax = 0,1 while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax # Chai Wah Wu, Aug 29 2024
The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products when parts are increased by 1 are 5,8,9,12,16 and their sum is a(4) = 50.
b:= proc(n, i) option remember; `if`(n=0 or i=1, 2^n, b(n, i-1) +(1+i)*b(n-i, min(n-i, i))) end: a:= n-> b(n$2): seq(a(n), n=0..50); # Alois P. Heinz, Sep 07 2014
Table[Plus @@ Times @@@ (IntegerPartitions[n] + 1), {n, 0, 28}] (* T. D. Noe, Nov 01 2011 *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, (1+i) * b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)
S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products of squares of parts are 16,9,16,4,1 and their sum is a(4) = 46.
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, i^2*b(n-i, i)))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Sep 07 2014
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, i^2*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *) Table[Total[Times@@(#^2)&/@IntegerPartitions[n]],{n,0,30}] (* Harvey P. Dale, Apr 29 2018 *) Table[Total[Times@@@(IntegerPartitions[n]^2)],{n,0,30}] (* Harvey P. Dale, Sep 07 2023 *)
S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
N=22;q='q+O('q^N); Vec(1/prod(n=1,N,1-n^2*q^n)) \\ Joerg Arndt, Aug 31 2015
Coefficients(&*[(1-m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 18 2018
P:= mul(1-m*q^m,m=1..100): S:= series(P,q,101): seq(coeff(S,q,j),j=0..100); # Robert Israel, Jun 02 2015 # second Maple program: b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Sean A. Irvine (after Alois P. Heinz), May 19 2019
nmax = 40; CoefficientList[Series[Product[1 - k*x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *) nmax = 40; CoefficientList[Series[Exp[-Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *) (* More efficient program: *) nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j+1]] -= k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 07 2016 *)
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n))) \\ G. C. Greubel, Feb 18 2018
The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products of factorials of parts are 24,6,4,2,1 and their sum is a(4) = 37. 1 + x + 3 x^2 + 9 x^3 + 37 x^4 + 169 x^5 + 981 x^6 + 6429 x^7 + 49669 x^8 + ...
b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+ `if`(i>n, 0, j^i*b(n-i, i, j+1)))) end: a:= n-> b(n$2, 1): seq(a(n), n=0..40); # Alois P. Heinz, Aug 03 2013 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)*i!))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
Table[Plus @@ Map[Times @@ (#!) &, IntegerPartitions[n]], {n, 0, 20}] (* Olivier Gérard, Oct 22 2011 *) a[ n_] := If[ n < 0, 0, Plus @@ Times @@@ (IntegerPartitions[ n] !)] (* Michael Somos, Feb 09 2012 *) nmax=20; CoefficientList[Series[Product[1/(1-k!*x^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *) b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, If[i<1, 0, b[n, i-1, j] + If[i>n, 0, j^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
N=66; q='q+O('q^N); gf= 1/prod(n=1,N, (1-n!*q^n) ); Vec(gf) /* Joerg Arndt, Oct 06 2012 */
Comments