cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 77 results. Next

A067569 Numbers n such that A000041(n) divides A006906(n).

Original entry on oeis.org

0, 1, 3, 8, 10
Offset: 1

Views

Author

Naohiro Nomoto, Jan 30 2002

Keywords

A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Comments

These are different from plane partitions.
For ordered partitions of partitions see A055887 which may be computed from A036036 and A048996. - Alford Arnold, May 19 2006
Twice partitioned numbers correspond to triangles (or compositions) in the multiorder of integer partitions. - Gus Wiseman, Oct 28 2015

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
		

Crossrefs

The strict case is A296122.
Row sums of A321449.
Column k=2 of A323718.
Without singletons we have A327769, A358828, A358829.
For odd lengths we have A358823, A358824.
For distinct lengths we have A358830, A358912.
For strict partitions see A358914, A382524.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 26 2015
  • Mathematica
    Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */

Formula

G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003
From Vaclav Kotesovec, Mar 27 2016: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0
c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1
c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2
c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2015

A022629 Expansion of Product_{m>=1} (1 + m*q^m).

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 25, 43, 64, 120, 186, 288, 463, 695, 1105, 1728, 2525, 3741, 5775, 8244, 12447, 18302, 26424, 37827, 54729, 78330, 111184, 159538, 225624, 315415, 444708, 618666, 858165, 1199701, 1646076, 2288961, 3150951, 4303995, 5870539, 8032571, 10881794, 14749051, 19992626
Offset: 0

Views

Author

Keywords

Comments

Sum of products of terms in all partitions of n into distinct parts. - Vladeta Jovovic, Jan 19 2002
Number of partitions of n into distinct parts, when there are j sorts of part j. a(4) = 7: 4, 4', 4'', 4''', 31, 3'1, 3''1. - Alois P. Heinz, Aug 24 2015

Examples

			The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding products are 6,5,8,6 and their sum is a(6) = 25.
		

Crossrefs

Programs

  • Magma
    Coefficients(&*[(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 1] elif i<1 then [0, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i-1));
             [f[1]+g[1], f[2]+g[2]*i]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 02 2012
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
  • Mathematica
    nn=20;CoefficientList[Series[Product[1+i x^i,{i,1,nn}],{x,0,nn}],x]  (* Geoffrey Critzer, Nov 02 2012 *)
    nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
    (* More efficient program: 10000 terms, 4 minutes, 100000 terms, 6 hours *) nmax = 40; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j+1]] += k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 06 2016 *)
  • PARI
    N=66; q='q+O('q^N); Vec(prod(n=1,N, (1+n*q^n) )) \\ Joerg Arndt, Oct 06 2012
    

Formula

Conjecture: log(a(n)) ~ sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, May 08 2018

A297328 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 14, 0, 1, 5, 18, 37, 49, 25, 0, 1, 6, 25, 64, 114, 114, 56, 0, 1, 7, 33, 100, 219, 312, 282, 97, 0, 1, 8, 42, 146, 375, 676, 855, 624, 198, 0, 1, 9, 52, 203, 594, 1276, 2030, 2178, 1422, 354, 0, 1, 10, 63, 272, 889, 2196, 4155, 5736, 5496, 3058, 672, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 5)*x^2 + (1/6)*k*(k^2 + 15*k + 20)*x^3 + (1/24)*k*(k^3 + 30*k^2 + 155*k + 150)*x^4 + (1/120)*k*(k^4 + 50*k^3 + 575*k^2 + 1750*k + 624)*x^5 + ...
Square array begins:
  1,   1,    1,    1,    1,     1,  ...
  0,   1,    2,    3,    4,     5,  ...
  0,   3,    7,   12,   18,    25,  ...
  0,   6,   18,   37,   64,   100,  ...
  0,  14,   49,  114,  219,   375,  ...
  0,  25,  114,  312,  676,  1276,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 - i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    first(n, k) = my(res = matrix(n, k)); for(u=1, k, my(col = Vec(prod(j=1, n, 1/(1 - j*x^j)^(u-1)) + O(x^n))); for(v=1, n, res[v, u] = col[v])); res \\ Iain Fox, Dec 28 2017

Formula

G.f. of column k: Product_{j>=1} 1/(1 - j*x^j)^k.
A(0,k) = 1; A(n,k) = (k/n) * Sum_{j=1..n} A078308(j) * A(n-j,k). - Seiichi Manyama, Aug 16 2023

A078308 a(n) = Sum_{d divides n} d^(n/d + 1).

Original entry on oeis.org

1, 5, 10, 25, 26, 80, 50, 161, 163, 290, 122, 988, 170, 796, 1580, 2305, 290, 5561, 362, 10670, 9404, 5912, 530, 58436, 16251, 19258, 66340, 118640, 842, 381740, 962, 431105, 547172, 268214, 509500, 3534037, 1370, 1056880, 4813052, 8616326, 1682
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2002

Keywords

Crossrefs

Programs

  • Maple
    A078308 := proc(n)
            add( d^(n/d+1),d=numtheory[divisors](n)) ;
    end proc:
    seq(A078308(n),n=1..10) ; # R. J. Mathar, Dec 14 2011
  • Mathematica
    Table[CoefficientList[Series[-Log[Product[(1 - k x^k), {k, 1, 60}]], {x, 0, 60}],x][[n + 1]] (n), {n, 1, 60}] (* Benedict W. J. Irwin, Jul 04 2016 *)
    Table[Total[#^(n/#+1)&/@Divisors[n]],{n,50}] (* Harvey P. Dale, Aug 02 2025 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n/d+1)); \\ Michel Marcus, Jul 04 2016
    
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-k*x^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{n>0} n^2*x^n/(1-n*x^n).
L.g.f.: -log(Product_{ k>0 } (1-k*x^k)) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 04 2016

A090864 Complement of generalized pentagonal numbers (A001318).

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Jon Perry, Feb 12 2004

Keywords

Comments

Also n for which A006906(n) is even, or equivalently n for which A000009(n) is even (since A006906 and A000009 have the same parity).
The number of partitions of a(n) into distinct parts with an even number of parts equals the number of such partitions with an odd number of parts: A067661(a(n)) = A067659(a(n)). See, e.g., the Freitag-Busam reference, p. 410 given in A036499. - Wolfdieter Lang, Jan 19 2016

Crossrefs

Programs

  • Mathematica
    Complement[Range[200], Select[Accumulate[Range[0,200]]/3, IntegerQ]] (* G. C. Greubel, Jun 06 2017 *)
  • PARI
    a(n) = my(q,r); [q,r]=divrem(sqrtint(24*n),3); n + q + (r >= bitnegimply(1,q)); \\ Kevin Ryde, Sep 15 2024
  • Python
    from math import isqrt
    def A090864(n):
        def f(x): return n+(m:=isqrt(24*x+1)+1)//6+(m-2)//6
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024
    

Formula

A080995(a(n)) = 0; A000009(a(n)) = A118303(n). - Reinhard Zumkeller, Apr 22 2006
A010815(a(n)) = A067661(a(n)) - A067659(a(n)) = 0, n >= 1. See a comment above. - Wolfdieter Lang, Jan 19 2016
a(n) = n+1 + A085141(n-1) + A111651(n). - Kevin Ryde, Sep 15 2024

Extensions

More terms from Reinhard Zumkeller, Apr 22 2006
Edited by Ray Chandler, Dec 14 2011
Edited by Jon E. Schoenfield, Nov 25 2016

A074141 Sum of products of parts increased by 1 in all partitions of n.

Original entry on oeis.org

1, 2, 7, 18, 50, 118, 301, 684, 1621, 3620, 8193, 17846, 39359, 84198, 181313, 383208, 811546, 1695062, 3546634, 7341288, 15207022, 31261006, 64255264, 131317012, 268336125, 545858260, 1110092387, 2250057282, 4558875555, 9213251118, 18613373708, 37529713890
Offset: 0

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Comments

Replace each term in A036035 by the number of its divisors as in A074139; sequence gives sum of terms in the n-th row.
This is the sum of the number of submultisets of the multisets with n elements; a part of a partition is a frequency of such an element. - George Beck, Nov 01 2011

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products when parts are increased by 1 are 5,8,9,12,16 and their sum is a(4) = 50.
		

Crossrefs

Row sums of A074139 and of A079025 and of A079308 and of A238963.
Column k=2 of A261718.
Cf. A267008.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          2^n, b(n, i-1) +(1+i)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 07 2014
  • Mathematica
    Table[Plus @@ Times @@@ (IntegerPartitions[n] + 1), {n, 0, 28}] (* T. D. Noe, Nov 01 2011 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, (1+i) * b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */

Formula

G.f.: 1/Product_{m>0} (1-(m+1)*x^m).
a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*(d+1)^(k/d).
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2, (k+1)*S(n-k,k))+(n+1), S(n,n)=n+1, S(0,m)=1, S(n,m)=0 for nVladimir Kruchinin, Sep 07 2014
a(n) ~ c * 2^n, where c = Product_{k>=2} 1/(1-(k+1)/2^k) = 18.56314656361011472747535423226928404842588594722907068201... = A256155. - Vaclav Kotesovec, Sep 11 2014, updated May 10 2021

Extensions

More terms from Alford Arnold, Sep 17 2002
More terms, better description and formulas from Vladeta Jovovic, Vladimir Baltic, Nov 28 2002

A077335 Sum of products of squares of parts in all partitions of n.

Original entry on oeis.org

1, 1, 5, 14, 46, 107, 352, 789, 2314, 5596, 14734, 34572, 92715, 210638, 531342, 1250635, 3042596, 6973974, 16973478, 38399806, 91301956, 207992892, 483244305, 1089029008, 2533640066, 5642905974, 12912848789, 28893132440, 65342580250, 144803524640
Offset: 0

Views

Author

Vladeta Jovovic, Nov 30 2002

Keywords

Examples

			The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products of squares of parts are 16,9,16,4,1 and their sum is a(4) = 46.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, i^2*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, i^2*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    Table[Total[Times@@(#^2)&/@IntegerPartitions[n]],{n,0,30}] (* Harvey P. Dale, Apr 29 2018 *)
    Table[Total[Times@@@(IntegerPartitions[n]^2)],{n,0,30}] (* Harvey P. Dale, Sep 07 2023 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    N=22;q='q+O('q^N); Vec(1/prod(n=1,N,1-n^2*q^n)) \\ Joerg Arndt, Aug 31 2015

Formula

G.f.: 1/Product_{m>0} (1 - m^2*x^m).
Recurrence: a(n) = (1/n)*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d^(2*k/d + 1).
a(n) = S(n,1), where S(n,m) = n^2 + Sum_{k=m..n/2} k^2*S(n-k,k), S(n,n) = n^2, S(n,m) = 0 for m > n. - Vladimir Kruchinin, Sep 07 2014
From Vaclav Kotesovec, Mar 16 2015: (Start)
a(n) ~ c * 3^(2*n/3), where
c = 668.1486183948153029651700839617715291485899132694809388646986235... if n=3k
c = 667.8494657534167286226227360927068283390090685342574808235616845... if n=3k+1
c = 667.8481656987523944806949678900876994934226621916594805916358627... if n=3k+2
(End)
In closed form, a(n) ~ (Product_{k>=4}(1/(1 - k^2/3^(2*k/3))) / ((1 - 3^(-2/3)) * (1 - 4*3^(-4/3))) + Product_{k>=4}(1/(1 - (-1)^(2*k/3)*k^2/3^(2*k/3))) / ((-1)^(2*n/3) * (1 + 4/3*(-1/3)^(1/3)) * (1 - (-1/3)^(2/3))) + Product_{k>=4}(1/(1 - (-1)^(4*k/3)*k^2/3^(2*k/3))) / ((-1)^(4*n/3) * (1 + (-1)^(1/3)*3^(-2/3)) * (1 - 4*(-1)^(2/3)*3^(-4/3)))) * 3^(2*n/3 - 1). - Vaclav Kotesovec, Apr 25 2017
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018

A022661 Expansion of Product_{m>=1} (1-m*q^m).

Original entry on oeis.org

1, -1, -2, -1, -1, 5, 1, 13, 4, 0, 2, -8, -61, -31, 13, -156, 21, 11, 223, 92, 91, 426, 972, 165, 141, -1126, 440, 1294, -4684, -2755, -5748, -2414, -6679, 10511, -10048, -19369, 19635, 22629, 14027, 76969, -1990, 40193, -10678, 75795, 215767, -54322, -40882
Offset: 0

Views

Author

Keywords

Comments

Is a(9) the only occurrence of 0 in this sequence? - Robert Israel, Jun 02 2015

Crossrefs

Programs

  • Magma
    Coefficients(&*[(1-m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 18 2018
  • Maple
    P:= mul(1-m*q^m,m=1..100):
    S:= series(P,q,101):
    seq(coeff(S,q,j),j=0..100); # Robert Israel, Jun 02 2015
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Sean A. Irvine (after Alois P. Heinz), May 19 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 - k*x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
    nmax = 40; CoefficientList[Series[Exp[-Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
    (* More efficient program: *) nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j+1]] -= k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 07 2016 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n))) \\ G. C. Greubel, Feb 18 2018
    

A077365 Sum of products of factorials of parts in all partitions of n.

Original entry on oeis.org

1, 1, 3, 9, 37, 169, 981, 6429, 49669, 430861, 4208925, 45345165, 536229373, 6884917597, 95473049469, 1420609412637, 22580588347741, 381713065286173, 6837950790434781, 129378941557961565, 2578133190722896861, 53965646957320869469, 1183822028149936497501
Offset: 0

Views

Author

Vladeta Jovovic, Nov 30 2002

Keywords

Comments

Row sums of arrays A069123 and A134133. Row sums of triangle A134134.

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products of factorials of parts are 24,6,4,2,1 and their sum is a(4) = 37.
1 + x + 3 x^2 + 9 x^3 + 37 x^4 + 169 x^5 + 981 x^6 + 6429 x^7 + 49669 x^8 + ...
		

Crossrefs

Cf. A051296 (with compositions instead of partitions).

Programs

  • Maple
    b:= proc(n, i, j) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+
          `if`(i>n, 0, j^i*b(n-i, i, j+1))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 03 2013
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, b(n-i, i)*i!)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    Table[Plus @@ Map[Times @@ (#!) &, IntegerPartitions[n]], {n, 0, 20}] (* Olivier Gérard, Oct 22 2011 *)
    a[ n_] := If[ n < 0, 0, Plus @@ Times @@@ (IntegerPartitions[ n] !)] (* Michael Somos, Feb 09 2012 *)
    nmax=20; CoefficientList[Series[Product[1/(1-k!*x^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
    b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, If[i<1, 0, b[n, i-1, j] + If[i>n, 0, j^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N);
    gf= 1/prod(n=1,N, (1-n!*q^n) );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

G.f.: 1/Product_{m>0} (1-m!*x^m).
Recurrence: a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(k/d).
a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 67/n^4 + 457/n^5 + 3734/n^6 + 35741/n^7 + 392875/n^8 + 4886114/n^9 + 67924417/n^10), for coefficients see A256125. - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j!)^k*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018

Extensions

Unnecessarily complicated mma code deleted by N. J. A. Sloane, Sep 21 2009
Showing 1-10 of 77 results. Next