cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vladimir Kruchinin

Vladimir Kruchinin's wiki page.

Vladimir Kruchinin has authored 470 sequences. Here are the ten most recent ones:

A382225 Triangle read by rows: T(n,k) = Sum_{i=k..n} C(i-1,i-k)*C(i,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 13, 1, 1, 15, 65, 73, 21, 1, 1, 21, 140, 273, 171, 31, 1, 1, 28, 266, 798, 871, 346, 43, 1, 1, 36, 462, 1974, 3321, 2306, 631, 57, 1, 1, 45, 750, 4326, 10377, 11126, 5335, 1065, 73, 1, 1, 55, 1155, 8646, 28017, 42878, 31795, 11145, 1693, 91, 1
Offset: 0

Author

Vladimir Kruchinin, Mar 19 2025

Keywords

Comments

Triangle T(n,k) of minors of the main diagonal of Pascal's matrix, n -size matrix, k - number of element of diagonal.

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   7,   1;
  1, 10,  25,  13,   1;
  1, 15,  65,  73,  21,  1;
  1, 21, 140, 273, 171, 31, 1;
  ...
		

Crossrefs

Columns k=0-3 give: A000012, A000217, A001296(n-1) for n>=1, A107963(n-3) for n>=3.
Row sums give A024718.
T(n+1,n) gives A002061(n+1).

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n<0, 0,
          T(n-1, k)+binomial(n-1, k-1)*binomial(n, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 20 2025
  • Mathematica
    A382225[n_, k_] := A382225[n, k] = If[k == n, 1, A382225[n-1, k] + Binomial[n-1, k-1]*Binomial[n, k]];
    Table[A382225[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 22 2025 *)
  • Maxima
    h[i,j]:=binomial(i+j-3,i-1);
    for n:1 thru 7 do
        if n=1 then print([1])
        else (M:genmatrix(h,n,n),
              print(makelist(determinant(minor(M,k,k)),k,1,n))
             );

Formula

G.f.: 1/(1-x) * ((1-x*(1-y))/(2*(sqrt((1-x*(1+y))^2-4*x^2*y)))+1/2).
T(n,k) = T(n-1,k)+C(n-1,k-1)*C(n,k).

A380048 a(n) = A000045(n) * A001003(n).

Original entry on oeis.org

0, 1, 3, 22, 135, 985, 7224, 55627, 436653, 3503666, 28537245, 235558347, 1965437136, 16552173909, 140505456663, 1200968926590, 10327551834411, 89286693775373, 775611959272392, 6766372185052247, 59256729852910425, 520754062920338026, 4590973472772299193, 40591542233796808247
Offset: 0

Author

Vladimir Kruchinin, Jan 11 2025

Keywords

Crossrefs

Formula

G.f.: 1/(4*x)-sqrt(16*x^2*(3+6*x+2*x^2)+32*x^2*sqrt(1-6*x-33*x^2+6*x^3+x^4))/(16*sqrt(5)*x^2).
a(n) = A000045(n) * A001003(n).

A373614 a(n) = Fibonacci(n)^2 * Catalan(n).

Original entry on oeis.org

0, 1, 2, 20, 126, 1050, 8448, 72501, 630630, 5620472, 50807900, 465643906, 4313336832, 40331298100, 380115482760, 3607451824500, 34444346026230, 330647239219110, 3189220347667200, 30893105448487590, 300408447948394500, 2931423727834870320, 28696206742447216440, 281728667746183208850, 2773282854528632549376
Offset: 0

Author

Vladimir Kruchinin, Jun 10 2024

Keywords

Crossrefs

Programs

  • Maple
    gf := (2 * sqrt(-sqrt(16*x^2 - 12*x+1) - 6*x + 1) / (5*sqrt(10)*x) + 3*(1 -sqrt((-2*sqrt(16*x^2 - 12*x + 1) - 42*x + 7) / 5 + 6*x))/(10*x)) + (1 -sqrt(4*x + 1)) / (5*x): assume(x > 0): ser := series(gf, x, 30):
    seq(coeff(ser, x, n), n = 0..24); # Peter Luschny, Jun 11 2024
  • Mathematica
    CoefficientList[Series[(2*Sqrt[-Sqrt[16*x^2 - 12*x + 1] - 6*x + 1]/(5*Sqrt[10]*x) + 3*(1 -Sqrt[(-2*Sqrt[16*x^2 - 12*x + 1] - 42*x + 7)/5 + 6*x])/(10*x)) + (1 -Sqrt[4*x + 1])/(5*x),{x,0,24},Assumptions->(x>0)],x] (* Stefano Spezia, Jun 11 2024 *)
    (* A variant that does not need assumptions: *)
    gf := ((2 Sqrt[1 - 2 x (Sqrt[5] + 3)] + Sqrt[2] (Sqrt[5] + 2) Sqrt[3 + Sqrt[5] - 8 x] + (Sqrt[5] + 3) (2 Sqrt[4 x + 1] - 5)) (Sqrt[5] - 3)) / (40 x);
    Round[CoefficientList[Series[gf, {x, 0, 24}], x]]  (* Peter Luschny, Jun 11 2024 *)

Formula

G.f.: (2*sqrt(-sqrt(16*x^2 - 12*x + 1) - 6*x + 1)/(5*sqrt(10)*x) + 3*(1 -sqrt((-2*sqrt(16*x^2 - 12*x + 1) - 42*x + 7)/5 + 6*x))/(10*x)) + (1 -sqrt(4*x + 1))/(5*x).
a(n) = A007598(n)*A000108(n).
D-finite with recurrence n*(n-1)*(n+1)*a(n) -4*n*(2*n-1)*(n-1)*a(n-1) -8*(n-1)*(2*n-1)*(2*n-3)*a(n-2) +8*(2*n-5)*(2*n-1)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jun 12 2024

A373622 a(n) = A000032(n)*A000045(n)*A000108(n).

Original entry on oeis.org

0, 1, 6, 40, 294, 2310, 19008, 161733, 1411410, 12563408, 113624940, 1041158846, 9645100416, 90182859700, 849966450840, 8066498833800, 77019930780030, 739349587508730, 7131313919822400, 69079082238199110, 671733716498945100, 6554862704411317920, 64166669054324268120, 629964451984076275950
Offset: 0

Author

Vladimir Kruchinin, Jun 11 2024

Keywords

Crossrefs

Programs

  • Maple
    gf := (sqrt(-10*sqrt(16*x^2 - 12*x + 1) - 60*x + 35) - 5) / (10*x):
    ser := series(gf, x, 32): seq(coeff(ser, x, n), n = 0..22);
    # Peter Luschny, Jun 11 2024
  • Mathematica
    CoefficientList[Series[(Sqrt[(-2*Sqrt[16*x^2-12*x+1]-42*x+7)/5+6*x]-1)/(2*x),{x,0,23}],x] (* Stefano Spezia, Jun 11 2024 *)

Formula

G.f.: (sqrt((-2*sqrt(16*x^2 - 12*x + 1) - 42*x + 7)/5 + 6*x) - 1)/(2*x).
D-finite with recurrence n*(n+1)*a(n) -6*n*(2*n-1)*a(n-1) +4*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jun 12 2024

A372252 a(n) = A000045(n+1)*A000292(n) (product of a Fibonacci number and a tetrahedral number).

Original entry on oeis.org

0, 1, 8, 30, 100, 280, 728, 1764, 4080, 9075, 19580, 41184, 84812, 171535, 341600, 671160, 1303152, 2503896, 4766340, 8997450, 16856840, 31366181, 58001768, 106646400, 195065000, 355074525, 643465368, 1161281394
Offset: 0

Author

Vladimir Kruchinin, Apr 24 2024

Keywords

Crossrefs

Formula

G.f.: -x*((x^2+1)*(x^2-4*x-1))/(x^2+x-1)^4.

A372199 a(n) = n! * F(n) * H(n), where F(n) is the n-th Fibonacci number and H(n) the n-th harmonic number.

Original entry on oeis.org

1, 3, 22, 150, 1370, 14112, 169884, 2301264, 34903584, 584575200, 10728401760, 214047774720, 4614042856320, 106866549054720, 2646889430976000, 69814736722483200, 1953778728154982400, 57822137143219814400, 1804373878844546150400, 59213693468692224000000
Offset: 1

Author

Vladimir Kruchinin, Apr 21 2024

Keywords

Crossrefs

Programs

  • Maple
    H := proc(n)
        add(1/i,i=1..n) ;
    end proc:
    A372199 := proc(n)
        n!*A000045(n)*H(n) ;
    end proc:
    seq(A372199(n),n=1..70) ; # R. J. Mathar, Apr 24 2024
  • Mathematica
    a[n_] := n! Fibonacci[n] HarmonicNumber[n]; Array[a,20] (* Stefano Spezia, Apr 22 2024 *)

Formula

E.g.f.: (5*x*log(-x^2 - x + 1) - sqrt(5)*(x - 2)*(log(2 - (sqrt(5) + 1)*x) -log((sqrt(5) - 1)*x + 2))) / (10*x*(x^2 + x - 1)).
a(n) = n! * A000045(n) * A001008(n) / A002805(n).
a(n) = A000045(n) * A000254(n) / A002805(n). - R. J. Mathar, Apr 24 2024
D-finite with recurrence 5*a(n) +5*(-2*n+1)*a(n-1) +(-5*n^2+10*n+1)*a(n-2) +(10*n^3-45*n^2+58*n-14)*a(n-3) +(5*n^4-40*n^3+109*n^2-108*n+16)*a(n-4) +2*(n-4)^3*a(n-5) +(n-4)^2*(n-5)^2*a(n-6)=0. - R. J. Mathar, Apr 24 2024

A372210 Product of n!, n-th Pell number and n-th harmonic number.

Original entry on oeis.org

1, 6, 55, 600, 7946, 123480, 2208492, 44710272, 1011177360, 25274905920, 692042185440, 20602098316800, 662620120237440, 22898921925035520, 846245264387040000, 33303963647943475200, 1390631677349880268800, 61407154400075559936000, 2859166138267857522585600
Offset: 1

Author

Vladimir Kruchinin, Apr 22 2024

Keywords

Formula

E.g.f.: (2*x*log(-x^2-2*x+1)+(sqrt(2)-sqrt(2)*x)*log(-((sqrt(2)+1)*x-1) / ((sqrt(2)-1)*x+1)))/(4*(x^2+2*x-1)).
a(n) = n!*A000129(n)*A001008(n)/A002805(n).
D-finite with recurrence 8*a(n) +16*(-2*n+1)*a(n-1) +(16*n^2-32*n+25)*a(n-2) +4*(8*n^3-36*n^2+47*n-13)*a(n-3) +2*(2*n-5)*(2*n^3-11*n^2+17*n-7)*a(n-4) +4*(n-4)^3*a(n-5) +(n-4)^2*(n-5)^2*a(n-6)=0. - R. J. Mathar, Apr 24 2024

A372216 Product of n-th Pell number and n-th Catalan number: a(n) = A000129(n)*A000108(n).

Original entry on oeis.org

1, 4, 25, 168, 1218, 9240, 72501, 583440, 4789070, 39940888, 337490426, 2883046320, 24858176900, 216046612080, 1890737146125, 16647522481440, 147365806700310, 1310740896927000, 11708311265437710, 104989351441019760
Offset: 1

Author

Vladimir Kruchinin, Apr 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(2*x)-Sqrt[Sqrt[-16*x^2-8*x+1]+4*x+3]/(4*x),{x,0,20}],x] (* Stefano Spezia, Apr 22 2024 *)

Formula

G.f.: 1/(2*x)-sqrt(sqrt(-16*x^2-8*x+1)+4*x+3)/(4*x).
D-finite with recurrence +n*(n+1)*a(n) -4*n*(2*n-1)*a(n-1) -4*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Apr 24 2024

A372015 Product of Fibonacci and self-convolution of Fibonacci numbers: a(n) = A000045(n+1)*A001629(n+1).

Original entry on oeis.org

0, 1, 4, 15, 50, 160, 494, 1491, 4420, 12925, 37380, 107136, 304764, 861445, 2421700, 6775755, 18879734, 52413856, 145038890, 400183575, 1101277060, 3023462521, 8282790024, 22646131200, 61805595000, 168399404425, 458128878724, 1244567262471, 3376576740410, 9149594423200
Offset: 0

Author

Vladimir Kruchinin, Apr 15 2024

Keywords

Comments

Conjecture: a(n) is the total number of pairs of adjacent parts that are the same color in all n-color compositions of n+1. - John Tyler Rascoe, Jul 30 2024

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then return n^2 fi;
    -((2 - 2*n^2 + n)*a(n - 1) + (1 - 2*n^2 + 3*n)*a(n - 2) + n^2*a(n - 3))/(n - 1)^2 end: seq(a(n), n = 0..29);  # Peter Luschny, Apr 16 2024
  • Mathematica
    CoefficientList[Series[x(1-x)/((1+x)*(1-3*x+x^2)^2),{x,0,29}],x] (* Stefano Spezia, Apr 16 2024 *)
  • PARI
    A_x(N)= {my(x='x+O('x^N)); concat([0],Vec(x*(1-x)/((1+x)*(1-3*x+x^2)^2)))}
    A_x(40) \\ John Tyler Rascoe, Jul 29 2024

Formula

a(n) = F(n+1)*((n+2)*F(n) + (n)*F(n+2))/5 where F(n) = A000045(n) is the Fibonacci numbers.
G.f.: x*(1-x)/((1+x)*(1-3*x+x^2)^2).

A371986 Product of Lucas and Catalan numbers: a(n) = A000032(n)*A000108(n).

Original entry on oeis.org

2, 1, 6, 20, 98, 462, 2376, 12441, 67210, 369512, 2065908, 11698414, 66979864, 387050900, 2254552920, 13223768580, 78034377690, 462961545090, 2759796408600, 16522143563310, 99295449593340, 598836351581520, 3622983967834920, 21982916983078350, 133739841802846968
Offset: 0

Author

Vladimir Kruchinin, Apr 15 2024

Keywords

Programs

  • Maple
    From Peter Luschny, Apr 15 2024: (Start)
    a := n -> ((2 - 2*sqrt(5))^n + (2 + 2*sqrt(5))^n) * GAMMA(n + 1/2) / (sqrt(Pi) * GAMMA(n + 2)): seq(simplify(a(n)), n = 0..24);
    # With g.f.:
    assume(x>0); f := sqrt(1 - 4*x*(4*x + 1)):
    gf := (sqrt(1 + f - 2*x) + sqrt(5)*sqrt(1 - f - 2*x) - sqrt(2))/(sqrt(8)*x):
    ser := series(gf, x, 26): seq(simplify(coeff(ser, x, n)), n = 0..24);
    # Recurrence:
    a := proc(n) option remember: if n < 2 then return [2, 1][n + 1] fi;
    2*(2*n - 1)*(n*a(n - 1) + (4*n - 6)*a(n - 2)) / (n*(n + 1)) end:
    seq(a(n), n=0..24);  (End)
  • Mathematica
    a[n_] := a[n] = Switch[n, 0, 2, 1, 1, _, 2*(2n - 1)*(n*a[n - 1] + (4n - 6)*a[n - 2])/(n*(n + 1))];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 17 2024, after Peter Luschny *)
  • Python
    def A371986_gen(): # generator of terms
        a, b, n = 2, 1, 2
        while True:
            yield a
            a, b = b, (4*n - 2)*(n*b + (4*n - 6)*a) // (n*n + n)
            n += 1
    def A371986_list(len):
        it =  A371986_gen()
        return [next(it) for _ in range(len)]
    print(A371986_list(25))  # Peter Luschny, Apr 15 2024

Formula

G.f.: (5*sqrt(-sqrt(-16*x^2 - 4*x+1) - 2*x+1)) / (2*sqrt(10)*x) - (1 - sqrt(sqrt( -16*x^2 - 4*x+1) - 2*x + 1) / sqrt(2)) / (2*x).
E.g.f.: exp(x-sqrt(5)*x)*(BesselI(0, x-sqrt(5)*x) - BesselI(1, x-sqrt(5)*x) + exp(2*sqrt(5)*x) * (BesselI(0, x+sqrt(5)*x) - BesselI(1, x+sqrt(5)*x))). - Stefano Spezia, Apr 15 2024
From Peter Luschny, Apr 15 2024: (Start)
a(n) = 2*(2*n - 1)*(n*a(n - 1) + (4*n - 6)*a(n - 2)) / (n*(n + 1)) for n >= 2.
a(n) = ((2 - 2*sqrt(5))^n + (2 + 2*sqrt(5))^n) * Gamma(n + 1/2) / (sqrt(Pi) * Gamma(n + 2)).
a(n) ~ (2 + 2*sqrt(5))^n / (n*(n*Pi)^(1/2)). (End)