cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: John Tyler Rascoe

John Tyler Rascoe's wiki page.

John Tyler Rascoe has authored 101 sequences. Here are the ten most recent ones:

A386891 Irregular triangle read by rows: T(n,k) is the number of compositions of n such that the maximal cardinality of C is k, where C is a subset of the set of parts such that all elements in C appear in weakly increasing order within the composition.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 1, 0, 6, 2, 0, 11, 5, 0, 21, 10, 1, 0, 39, 23, 2, 0, 74, 49, 5, 0, 139, 107, 10, 0, 271, 216, 24, 1, 0, 524, 447, 51, 2, 0, 1031, 895, 117, 5, 0, 2023, 1813, 250, 10, 0, 3998, 3630, 544, 20, 0, 7878, 7344, 1115, 46, 1, 0, 15601, 14738, 2330, 97, 2
Offset: 0

Author

John Tyler Rascoe, Aug 06 2025

Keywords

Comments

Here the set of parts of a composition is the set of all parts appearing in the composition.

Examples

			Triangle begins:
    k=0    1    2   3  4
 n=0  1,
 n=1  0,   1,
 n=2  0,   2,
 n=3  0,   3,   1,
 n=4  0,   6,   2,
 n=5  0,  11,   5,
 n=6  0,  21,  10,  1,
 n=7  0,  39,  23,  2,
 n=8  0,  74,  49,  5,
 n=9  0, 139, 107, 10,
 n=10 0, 271, 216, 24, 1,
...
The composition of n = 3 (2,1) with set of parts {1,2} has maximal subsets {1} and {2} both with all parts appearing in weakly increasing order, so (2,1) is counted under T(3,1) = 3.
The composition of n = 15 (3,1,1,2,3,5) with set of parts {1,2,3,5} has the maximal subset {1,2,5}, so (3,1,1,2,3,5) is counted under T(15,3) = 1115.
		

Crossrefs

Cf. A002024 (row lengths), A011782 (row sums).

Programs

  • Python
    # see links

A385604 Number of compositions of n such that the odd parts are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 25, 48, 86, 162, 292, 541, 978, 1794, 3247, 5919, 10712, 19451, 35184, 63729, 115199, 208327, 376333, 679842, 1227403, 2215695, 3998408, 7214274, 13014001, 23472678, 42331028, 76330880, 137627168, 248122171, 447301570, 806312371, 1453405651
Offset: 0

Author

John Tyler Rascoe, Aug 02 2025

Keywords

Examples

			a(5) = 14 counts all compositions of n = 5 except (1,3,1) and (3,1,1) since the odd parts are not weakly increasing.
The composition of n = 13 (2,1,1,4,2,3) has odd parts (1,1,3), so it is counted under a(13) = 1794.
		

Crossrefs

Programs

  • PARI
    A_x(N) = {my(x='x+O('x^(N+1))); Vec((1-x^2)/(1-2*x^2)/prod(i=0,N, 1-x^(2*i+1)*(1-x^2)/(1-2*x^2)))}

Formula

G.f.: (1 - x^2)/( (1 - 2*x^2) * Product_{i>=0} (1 - x^(2*i + 1) * (1 - x^2)/(1 - 2*x^2)) ).

A386474 Number of sets of lists of [n] such that no list is longer than than the total number of lists.

Original entry on oeis.org

1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0

Author

John Tyler Rascoe, Jul 23 2025

Keywords

Comments

Here sets of lists are set partitions of [n] such that the elements within each block are ordered but the blocks themselves are unordered.

Examples

			a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
		

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1,
          add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
  • PARI
    R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}

Formula

E.g.f.: Sum_{i>=0} ((x - x^(i+1))/(1 - x))^i / i!.

A386497 Number of sets of lists of [n] such that one list is the largest.

Original entry on oeis.org

1, 1, 2, 12, 60, 440, 3390, 33852, 338072, 4116240, 51776730, 736751180, 11075784852, 183142075272, 3157190863190, 59336602681020, 1164223828582320, 24348331444705952, 533422896546272562, 12365952739192923660, 298208300418298756460, 7570420981014167756760
Offset: 0

Author

John Tyler Rascoe, Jul 23 2025

Keywords

Comments

Here sets of lists are set partitions of [n] such that the elements within each block are ordered but the blocks themselves are unordered.

Examples

			a(3) = 12 counts: {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}, {(1,2,3)}, {(1,3,2)}, {(2,1,3)}, {(2,3,1)}, {(3,1,2)}, {(3,2,1)}.
		

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, t, add(b(n-j, max(m, j),
          `if`(j>m, 1, `if`(j=m, 0, t)))*(n-1)!*j/(n-j)!, j=1..n))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    With[{m = 21}, CoefficientList[Series[1 + Sum[x^j*Exp[(x - x^j)/(1 - x)], {j, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
  • PARI
    B_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(1+sum(j=1,N, x^j*exp((x-x^j)/(1-x)))))}

Formula

E.g.f.: 1 + Sum_{j>0} x^j * exp((x - x^j)/(1 - x)).

A386375 Number of words of length n over an infinite alphabet such that the letters cover an initial interval and the letter 1 occurs more frequently than any other letter.

Original entry on oeis.org

1, 1, 1, 4, 17, 96, 652, 5356, 51361, 568840, 7157036, 101048454, 1582644956, 27224336244, 509883010652, 10319902635984, 224283040843745, 5205554049801528, 128430045368430484, 3354764715348964222, 92460461868234201532, 2680680433302859375630, 81542551486359310209666
Offset: 0

Author

John Tyler Rascoe, Jul 19 2025

Keywords

Examples

			a(5) = 96 counts the following words (number of permutations shown in brackets): (1,1,1,1,1) [1], (1,1,1,1,2) [5], (1,1,1,2,2) [10], (1,1,1,2,3) [20], (1,1,2,3,4) [60].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
          add(b(n-j, t)/j!, j=1..min(n, t)))
        end:
    a:= n-> n!*add(b(n-j, j-1)/j!, j=0..n):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jul 19 2025
  • PARI
    B_x(N) = {my(x='x+O('x^N)); Vec(serlaplace( sum(i=0,N, x^i/(i!*(1-sum(j=1,i-1, x^j/j!))))))}

Formula

E.g.f.: Sum_{i>=0} x^i/(i! * (1 - Sum_{j=1..i-1} x^j/j!)).

A386374 Number of words of length n over an infinite alphabet such that the letters cover an initial interval and the letter 1 occurs at least as many times as any other letter.

Original entry on oeis.org

1, 1, 3, 10, 47, 276, 2022, 17606, 179391, 2093860, 27581888, 404680398, 6541528886, 115437202986, 2206844818622, 45408726154590, 1000134868827263, 23468606700087972, 584340284516996400, 15383829737201853518, 426915367401366308112, 12454073547413511363878
Offset: 0

Author

John Tyler Rascoe, Jul 19 2025

Keywords

Examples

			a(3) = 10 counts: (1,1,1), (1,1,2), (1,2,1), (1,2,3), (1,3,2), (2,1,1), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
          add(b(n-j, t)/j!, j=1..min(n, t)))
        end:
    a:= n-> n!*add(b(n-j, j)/j!, j=0..n):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 19 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(serlaplace(sum(i=0,N, x^i/(i! *(1-sum(j=1,i, x^j/j!))))))}

Formula

E.g.f.: Sum_{i>=0} x^i/(i! * (1 - Sum_{j=1..i} x^j/j!)).

A386255 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times and exactly one of each kind of letter is marked.

Original entry on oeis.org

1, 1, 4, 15, 64, 325, 1776, 11179, 72640, 489969, 3435580, 26495491, 221599104, 1893705697, 16145571820, 138299146665, 1241234863936, 12033569772769, 124055067568788, 1303750295285563, 13577876900409280, 139418829477000801, 1441311794301705964, 15537427948684769425
Offset: 0

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 15 counts: (1#,1,1), (1,1#,1), (1,1,1#), (1#,2#,2), (1#,2,2#), (2#,1#,2), (2,1#,2#), (2#,2,1#), (2,2#,1#), (2#,2,2), (2,2#,2), (2,2,2#), (3#,3,3), (3,3#,3), (3,3,3#) where # denotes a mark.
		

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/(j-1)!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=24; CoefficientList[Series[Product[1+Sum[x^j/(j-1)!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    E_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/((i-1)!)))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / (j-1)!).

A386254 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times.

Original entry on oeis.org

1, 1, 2, 6, 18, 60, 240, 1085, 5012, 23730, 121440, 685707, 4144668, 25614589, 159141892, 1012740885, 6805631232, 48872707006, 369227821608, 2853779791619, 22131042288980, 172055270717463, 1362017827326860, 11208504802237327, 96939147303239304, 875473007351905045
Offset: 0

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 6 counts: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2), (3,3,3).
		

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/j!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=26; CoefficientList[Series[Product[1+Sum[x^j/j!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    D_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/i!))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / j!).

A385373 Number of solid partitions with multiplicities (1, ..., n).

Original entry on oeis.org

1, 1, 6, 138, 14049, 6851919
Offset: 0

Author

John Tyler Rascoe, Jun 27 2025

Keywords

Comments

A solid partition with d distinct parts (p_1^(k_1) > p_2^(k_2) > ... > p_d^(k_d)) has the multiset of multiplicities (k_1, k_2, ..., k_d).
Alternatively, a(n) is the number of chains of plane partitions ordered by inclusion, comprised of n consecutive triangular numbers starting with 1.

Examples

			For n = 2 a solid partition having multiplicities (1,2) has two distinct parts (a,b^2) with a < b, and there are 6 ways to arrange these parts.
		

Crossrefs

Programs

  • Python
    # see Links

Formula

a(n) = A379277(A164894(n)) for n > 0.

A385123 Triangle Read by rows: T(n,k) is the number of rooted ordered trees with n non-root nodes with non-root node labels in {1,..,k} such that all labels appear at least once in all groups of sibling nodes.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 5, 6, 6, 0, 14, 22, 36, 24, 0, 42, 90, 150, 240, 120, 0, 132, 378, 648, 1560, 1800, 720, 0, 429, 1638, 3318, 8400, 16800, 15120, 5040, 0, 1430, 7278, 18180, 43128, 126000, 191520, 141120, 40320, 0, 4862, 32946, 98502, 238320, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0

Author

John Tyler Rascoe, Jun 18 2025

Keywords

Examples

			Triangle begins:
    k=0    1    2      3     4      5      6     7
 n=0 [1]
 n=1 [0,   1]
 n=2 [0,   2,   2]
 n=3 [0,   5,   6,     6]
 n=4 [0,  14,  22,    36,   24]
 n=5 [0,  42,  90,   150,  240,   120]
 n=6 [0, 132,  378,  648, 1560,  1800,   720]
 n=7 [0, 429, 1638, 3318, 8400, 16800, 15120, 5040]
...
T(3,2) = 6 counts the three leaf permutations of each of the following trees:
      __o__        __o__
     /  |  \      /  |  \
   (1) (1) (2)  (1) (2) (2)
		

Crossrefs

Cf. A000108 (column k=1), A000142 (main diagonal), A385125 (row sums).

Programs

  • PARI
    subsets(S) = {my(s=List()); for(i=0, 2^(#S) -1, my(x=List()); for(j=1,#S, if(bitand(i, 1<<(j-1)), listput(x, S[j]))); listput(s,Vec(x))); Vec(s)}
    C_aB(B) = {my(S = subsets(B)); sum(i=1,#S, (1/(1-x*z*#S[i]))*(-1)^(#B-#S[i]))}
    D(k,N,B) = {if(k>N,1, substpol(C_aB(B),z,1 + D(k+1,N-#B+1,B)))}
    Dx(N,B) = {Vec(1+D(1,N,B)+ O('x^(N+1)))}
    T(max_row) = {my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Dx(N+1, vector(k,i,i))~])); vector(N, n, vector(n, k, v[n, k]))}
    T(8)