John Tyler Rascoe has authored 101 sequences. Here are the ten most recent ones:
A386891
Irregular triangle read by rows: T(n,k) is the number of compositions of n such that the maximal cardinality of C is k, where C is a subset of the set of parts such that all elements in C appear in weakly increasing order within the composition.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 3, 1, 0, 6, 2, 0, 11, 5, 0, 21, 10, 1, 0, 39, 23, 2, 0, 74, 49, 5, 0, 139, 107, 10, 0, 271, 216, 24, 1, 0, 524, 447, 51, 2, 0, 1031, 895, 117, 5, 0, 2023, 1813, 250, 10, 0, 3998, 3630, 544, 20, 0, 7878, 7344, 1115, 46, 1, 0, 15601, 14738, 2330, 97, 2
Offset: 0
Triangle begins:
k=0 1 2 3 4
n=0 1,
n=1 0, 1,
n=2 0, 2,
n=3 0, 3, 1,
n=4 0, 6, 2,
n=5 0, 11, 5,
n=6 0, 21, 10, 1,
n=7 0, 39, 23, 2,
n=8 0, 74, 49, 5,
n=9 0, 139, 107, 10,
n=10 0, 271, 216, 24, 1,
...
The composition of n = 3 (2,1) with set of parts {1,2} has maximal subsets {1} and {2} both with all parts appearing in weakly increasing order, so (2,1) is counted under T(3,1) = 3.
The composition of n = 15 (3,1,1,2,3,5) with set of parts {1,2,3,5} has the maximal subset {1,2,5}, so (3,1,1,2,3,5) is counted under T(15,3) = 1115.
A385604
Number of compositions of n such that the odd parts are weakly increasing.
Original entry on oeis.org
1, 1, 2, 4, 7, 14, 25, 48, 86, 162, 292, 541, 978, 1794, 3247, 5919, 10712, 19451, 35184, 63729, 115199, 208327, 376333, 679842, 1227403, 2215695, 3998408, 7214274, 13014001, 23472678, 42331028, 76330880, 137627168, 248122171, 447301570, 806312371, 1453405651
Offset: 0
a(5) = 14 counts all compositions of n = 5 except (1,3,1) and (3,1,1) since the odd parts are not weakly increasing.
The composition of n = 13 (2,1,1,4,2,3) has odd parts (1,1,3), so it is counted under a(13) = 1794.
A386474
Number of sets of lists of [n] such that no list is longer than than the total number of lists.
Original entry on oeis.org
1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0
a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
-
b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1,
add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 23 2025
-
With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}
A386497
Number of sets of lists of [n] such that one list is the largest.
Original entry on oeis.org
1, 1, 2, 12, 60, 440, 3390, 33852, 338072, 4116240, 51776730, 736751180, 11075784852, 183142075272, 3157190863190, 59336602681020, 1164223828582320, 24348331444705952, 533422896546272562, 12365952739192923660, 298208300418298756460, 7570420981014167756760
Offset: 0
a(3) = 12 counts: {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}, {(1,2,3)}, {(1,3,2)}, {(2,1,3)}, {(2,3,1)}, {(3,1,2)}, {(3,2,1)}.
-
b:= proc(n, m, t) option remember; `if`(n=0, t, add(b(n-j, max(m, j),
`if`(j>m, 1, `if`(j=m, 0, t)))*(n-1)!*j/(n-j)!, j=1..n))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 23 2025
-
With[{m = 21}, CoefficientList[Series[1 + Sum[x^j*Exp[(x - x^j)/(1 - x)], {j, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
B_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(1+sum(j=1,N, x^j*exp((x-x^j)/(1-x)))))}
A386375
Number of words of length n over an infinite alphabet such that the letters cover an initial interval and the letter 1 occurs more frequently than any other letter.
Original entry on oeis.org
1, 1, 1, 4, 17, 96, 652, 5356, 51361, 568840, 7157036, 101048454, 1582644956, 27224336244, 509883010652, 10319902635984, 224283040843745, 5205554049801528, 128430045368430484, 3354764715348964222, 92460461868234201532, 2680680433302859375630, 81542551486359310209666
Offset: 0
a(5) = 96 counts the following words (number of permutations shown in brackets): (1,1,1,1,1) [1], (1,1,1,1,2) [5], (1,1,1,2,2) [10], (1,1,1,2,3) [20], (1,1,2,3,4) [60].
-
b:= proc(n, t) option remember; `if`(n=0, 1,
add(b(n-j, t)/j!, j=1..min(n, t)))
end:
a:= n-> n!*add(b(n-j, j-1)/j!, j=0..n):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 19 2025
-
B_x(N) = {my(x='x+O('x^N)); Vec(serlaplace( sum(i=0,N, x^i/(i!*(1-sum(j=1,i-1, x^j/j!))))))}
A386374
Number of words of length n over an infinite alphabet such that the letters cover an initial interval and the letter 1 occurs at least as many times as any other letter.
Original entry on oeis.org
1, 1, 3, 10, 47, 276, 2022, 17606, 179391, 2093860, 27581888, 404680398, 6541528886, 115437202986, 2206844818622, 45408726154590, 1000134868827263, 23468606700087972, 584340284516996400, 15383829737201853518, 426915367401366308112, 12454073547413511363878
Offset: 0
a(3) = 10 counts: (1,1,1), (1,1,2), (1,2,1), (1,2,3), (1,3,2), (2,1,1), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
-
b:= proc(n, t) option remember; `if`(n=0, 1,
add(b(n-j, t)/j!, j=1..min(n, t)))
end:
a:= n-> n!*add(b(n-j, j)/j!, j=0..n):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 19 2025
-
A_x(N) = {my(x='x+O('x^N)); Vec(serlaplace(sum(i=0,N, x^i/(i! *(1-sum(j=1,i, x^j/j!))))))}
A386255
Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times and exactly one of each kind of letter is marked.
Original entry on oeis.org
1, 1, 4, 15, 64, 325, 1776, 11179, 72640, 489969, 3435580, 26495491, 221599104, 1893705697, 16145571820, 138299146665, 1241234863936, 12033569772769, 124055067568788, 1303750295285563, 13577876900409280, 139418829477000801, 1441311794301705964, 15537427948684769425
Offset: 0
a(3) = 15 counts: (1#,1,1), (1,1#,1), (1,1,1#), (1#,2#,2), (1#,2,2#), (2#,1#,2), (2,1#,2#), (2#,2,1#), (2,2#,1#), (2#,2,2), (2,2#,2), (2,2,2#), (3#,3,3), (3,3#,3), (3,3,3#) where # denotes a mark.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-j, min(n-j, i-1))/(j-1)!, j=i..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Jul 17 2025
-
terms=24; CoefficientList[Series[Product[1+Sum[x^j/(j-1)!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
-
E_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/((i-1)!)))))}
A386254
Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times.
Original entry on oeis.org
1, 1, 2, 6, 18, 60, 240, 1085, 5012, 23730, 121440, 685707, 4144668, 25614589, 159141892, 1012740885, 6805631232, 48872707006, 369227821608, 2853779791619, 22131042288980, 172055270717463, 1362017827326860, 11208504802237327, 96939147303239304, 875473007351905045
Offset: 0
a(3) = 6 counts: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2), (3,3,3).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-j, min(n-j, i-1))/j!, j=i..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 17 2025
-
terms=26; CoefficientList[Series[Product[1+Sum[x^j/j!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
-
D_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/i!))))}
A385373
Number of solid partitions with multiplicities (1, ..., n).
Original entry on oeis.org
1, 1, 6, 138, 14049, 6851919
Offset: 0
For n = 2 a solid partition having multiplicities (1,2) has two distinct parts (a,b^2) with a < b, and there are 6 ways to arrange these parts.
A385123
Triangle Read by rows: T(n,k) is the number of rooted ordered trees with n non-root nodes with non-root node labels in {1,..,k} such that all labels appear at least once in all groups of sibling nodes.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 5, 6, 6, 0, 14, 22, 36, 24, 0, 42, 90, 150, 240, 120, 0, 132, 378, 648, 1560, 1800, 720, 0, 429, 1638, 3318, 8400, 16800, 15120, 5040, 0, 1430, 7278, 18180, 43128, 126000, 191520, 141120, 40320, 0, 4862, 32946, 98502, 238320, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0
Triangle begins:
k=0 1 2 3 4 5 6 7
n=0 [1]
n=1 [0, 1]
n=2 [0, 2, 2]
n=3 [0, 5, 6, 6]
n=4 [0, 14, 22, 36, 24]
n=5 [0, 42, 90, 150, 240, 120]
n=6 [0, 132, 378, 648, 1560, 1800, 720]
n=7 [0, 429, 1638, 3318, 8400, 16800, 15120, 5040]
...
T(3,2) = 6 counts the three leaf permutations of each of the following trees:
__o__ __o__
/ | \ / | \
(1) (1) (2) (1) (2) (2)
-
subsets(S) = {my(s=List()); for(i=0, 2^(#S) -1, my(x=List()); for(j=1,#S, if(bitand(i, 1<<(j-1)), listput(x, S[j]))); listput(s,Vec(x))); Vec(s)}
C_aB(B) = {my(S = subsets(B)); sum(i=1,#S, (1/(1-x*z*#S[i]))*(-1)^(#B-#S[i]))}
D(k,N,B) = {if(k>N,1, substpol(C_aB(B),z,1 + D(k+1,N-#B+1,B)))}
Dx(N,B) = {Vec(1+D(1,N,B)+ O('x^(N+1)))}
T(max_row) = {my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Dx(N+1, vector(k,i,i))~])); vector(N, n, vector(n, k, v[n, k]))}
T(8)
Comments