cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A386375 Number of words of length n over an infinite alphabet such that the letters cover an initial interval and the letter 1 occurs more frequently than any other letter.

Original entry on oeis.org

1, 1, 1, 4, 17, 96, 652, 5356, 51361, 568840, 7157036, 101048454, 1582644956, 27224336244, 509883010652, 10319902635984, 224283040843745, 5205554049801528, 128430045368430484, 3354764715348964222, 92460461868234201532, 2680680433302859375630, 81542551486359310209666
Offset: 0

Views

Author

John Tyler Rascoe, Jul 19 2025

Keywords

Examples

			a(5) = 96 counts the following words (number of permutations shown in brackets): (1,1,1,1,1) [1], (1,1,1,1,2) [5], (1,1,1,2,2) [10], (1,1,1,2,3) [20], (1,1,2,3,4) [60].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
          add(b(n-j, t)/j!, j=1..min(n, t)))
        end:
    a:= n-> n!*add(b(n-j, j-1)/j!, j=0..n):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jul 19 2025
  • PARI
    B_x(N) = {my(x='x+O('x^N)); Vec(serlaplace( sum(i=0,N, x^i/(i!*(1-sum(j=1,i-1, x^j/j!))))))}

Formula

E.g.f.: Sum_{i>=0} x^i/(i! * (1 - Sum_{j=1..i-1} x^j/j!)).
Showing 1-1 of 1 results.