cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A006906 a(n) is the sum of products of terms in all partitions of n.

Original entry on oeis.org

1, 1, 3, 6, 14, 25, 56, 97, 198, 354, 672, 1170, 2207, 3762, 6786, 11675, 20524, 34636, 60258, 100580, 171894, 285820, 480497, 791316, 1321346, 2156830, 3557353, 5783660, 9452658, 15250216, 24771526, 39713788, 64011924, 102199026, 163583054, 259745051
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1 since the only partition of 0 is the empty partition. The product of its terms is the empty product, namely 1.
Same parity as A000009. - Jon Perry, Feb 12 2004

Examples

			Partitions of 0 are {()} whose products are {1} whose sum is 1.
Partitions of 1 are {(1)} whose products are {1} whose sum is 1.
Partitions of 2 are {(2),(1,1)} whose products are {2,1} whose sum is 3.
Partitions of 3 are 3 => {(3),(2,1),(1,1,1)} whose products are {3,2,1} whose sum is 6.
Partitions of 4 are {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} whose products are {4,3,4,2,1} whose sum is 14.
		

References

  • G. Labelle, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006906 n = p 1 n 1 where
       p _ 0 s = s
       p k m s | mReinhard Zumkeller, Dec 07 2011
  • Maple
    A006906 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add( A078308(k)*procname(n-k),k=1..n)/n ;
        end if;
    end proc: # R. J. Mathar, Dec 14 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*(i^j), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013
  • Mathematica
    (* a[n,k]=sum of products of partitions of n into parts <= k *) a[0,0]=1; a[n_,0]:=0; a[n_,k_]:=If[k>n, a[n,n], a[n,k] = a[n,k-1] + k a[n-k,k] ]; a[n_]:=a[n,n] (* Dean Hickerson, Aug 19 2007 *)
    Table[Total[Times@@@IntegerPartitions[n]],{n,0,35}] (* Harvey P. Dale, Jan 14 2013 *)
    nmax = 40; CoefficientList[Series[Product[1/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)

Formula

The limit of a(n+3)/a(n) is 3. However, the limit of a(n+1)/a(n) does not exist. In fact, the sequence {a(n+1)/a(n)} has three limit points, which are about 1.4422447, 1.4422491 and 1.4422549. (See the Links entry.) - Dean Hickerson, Aug 19 2007
a(n) ~ c(n mod 3) 3^(n/3), where c(0)=97923.26765718877..., c(1)=97922.93936857030... and c(2)=97922.90546334208... - Dean Hickerson, Aug 19 2007
G.f.: 1 / Product_{k>=1} (1-k*x^k).
G.f.: 1 + Sum_{n>=1} n*x^n / Product_{k=1..n} (1-k*x^k) = 1 + Sum_{n>=1} n*x^n / Product_{k>=n} (1-k*x^k). - Joerg Arndt, Mar 23 2011
a(n) = (1/n)*Sum_{k=1..n} A078308(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
O.g.f.: exp( Sum_{n>=1} Sum_{k>=1} k^n * x^(n*k) / n ). - Paul D. Hanna, Sep 18 2017
O.g.f.: exp( Sum_{n>=1} Sum_{k=1..n} A008292(n,k)*x^(n*k)/(n*(1-x^n)^(n+1)) ), where A008292 is the Eulerian numbers. - Paul D. Hanna, Sep 18 2017

Extensions

More terms from Vladeta Jovovic, Oct 04 2001
Edited by N. J. A. Sloane, May 19 2007

A297328 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 14, 0, 1, 5, 18, 37, 49, 25, 0, 1, 6, 25, 64, 114, 114, 56, 0, 1, 7, 33, 100, 219, 312, 282, 97, 0, 1, 8, 42, 146, 375, 676, 855, 624, 198, 0, 1, 9, 52, 203, 594, 1276, 2030, 2178, 1422, 354, 0, 1, 10, 63, 272, 889, 2196, 4155, 5736, 5496, 3058, 672, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 5)*x^2 + (1/6)*k*(k^2 + 15*k + 20)*x^3 + (1/24)*k*(k^3 + 30*k^2 + 155*k + 150)*x^4 + (1/120)*k*(k^4 + 50*k^3 + 575*k^2 + 1750*k + 624)*x^5 + ...
Square array begins:
  1,   1,    1,    1,    1,     1,  ...
  0,   1,    2,    3,    4,     5,  ...
  0,   3,    7,   12,   18,    25,  ...
  0,   6,   18,   37,   64,   100,  ...
  0,  14,   49,  114,  219,   375,  ...
  0,  25,  114,  312,  676,  1276,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 - i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    first(n, k) = my(res = matrix(n, k)); for(u=1, k, my(col = Vec(prod(j=1, n, 1/(1 - j*x^j)^(u-1)) + O(x^n))); for(v=1, n, res[v, u] = col[v])); res \\ Iain Fox, Dec 28 2017

Formula

G.f. of column k: Product_{j>=1} 1/(1 - j*x^j)^k.
A(0,k) = 1; A(n,k) = (k/n) * Sum_{j=1..n} A078308(j) * A(n-j,k). - Seiichi Manyama, Aug 16 2023

A087909 a(n) = Sum_{d|n} (n/d)^(d-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 9, 2, 14, 11, 23, 2, 83, 2, 73, 108, 202, 2, 546, 2, 905, 780, 1037, 2, 5553, 627, 4111, 6644, 12647, 2, 40605, 2, 49682, 59172, 65555, 18028, 382424, 2, 262165, 531612, 869675, 2, 2706581, 2, 3147083, 5180382, 4194329, 2, 27246533, 117651
Offset: 1

Views

Author

Vladeta Jovovic, Oct 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= DivisorSum[n, (n/#)^(#-1) &]; Array[a, 30] (* G. C. Greubel, May 16 2018 *)
  • PARI
    a(n)=sumdiv(n, d, d^(n/d-1) );  /* Joerg Arndt, Oct 07 2012 */
    
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 17 2019

Formula

G.f.: Sum_{k>0} x^k/(1-k*x^k).
From Seiichi Manyama, Jun 17 2019: (Start)
L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k.
a(p) = 2 for prime p. (End)

A294579 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(1 + k*n/d).

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 7, 1, 17, 28, 25, 6, 1, 33, 82, 97, 26, 12, 1, 65, 244, 385, 126, 80, 8, 1, 129, 730, 1537, 626, 588, 50, 15, 1, 257, 2188, 6145, 3126, 4508, 344, 161, 13, 1, 513, 6562, 24577, 15626, 35652, 2402, 2049, 163, 18
Offset: 1

Views

Author

Seiichi Manyama, Nov 02 2017

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,    1, ...
  3,  5,   9,  17,   33, ...
  4, 10,  28,  82,  244, ...
  7, 25,  97, 385, 1537, ...
  6, 26, 126, 626, 3126, ...
		

Crossrefs

Columns k=0..2 give A000203, A078308, A294567.
Rows k=0..1 give A000012, A000051(n+1).

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - j^k * x^j)). - Seiichi Manyama, Jun 02 2019
G.f. of column k: Sum_{j>0} j^(k+1) * x^j / (1 - j^k * x^j). - Seiichi Manyama, Jan 14 2023

A308502 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n/d + k).

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 9, 1, 17, 28, 25, 6, 1, 33, 82, 81, 26, 24, 1, 65, 244, 289, 126, 80, 8, 1, 129, 730, 1089, 626, 330, 50, 41, 1, 257, 2188, 4225, 3126, 1604, 344, 161, 37, 1, 513, 6562, 16641, 15626, 8634, 2402, 833, 163, 68, 1, 1025, 19684, 66049, 78126, 49100, 16808, 5249, 973, 290, 12
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			Square array begins:
    1,  1,   1,    1,    1,     1, ...
    3,  5,   9,   17,   33,    65, ...
    4, 10,  28,   82,  244,   730, ...
    9, 25,  81,  289, 1089,  4225, ...
    6, 26, 126,  626, 3126, 15626, ...
   24, 80, 330, 1604, 8634, 49100, ...
		

Crossrefs

Columns k=0..2 give A055225, A078308, A296601.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(n/# + k) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - j*x^j)^(j^(k-1))).

A296601 L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^k) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 9, 28, 81, 126, 330, 344, 833, 973, 1754, 1332, 5034, 2198, 5658, 8688, 13313, 4914, 28779, 6860, 54106, 45752, 33482, 12168, 254954, 93751, 78906, 255880, 505698, 24390, 1510700, 29792, 1671169, 1791312, 647114, 2819544, 12637371, 50654, 2282346, 14779520, 34058298, 68922, 68084220
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Examples

			L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 81*x^4/4 + 126*x^5/5 + 330*x^6/6 + 344*x^7/7 + 833*x^8/8 + 973*x^9/9 + ...
exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 42*x^4 + 103*x^5 + 289*x^6 + 690*x^7 + 1771*x^8 + 4206*x^9 + ... + A266941(n)*x^n + ...
		

Crossrefs

Column k=2 of A308502.

Programs

  • Mathematica
    nmax = 42; Rest[CoefficientList[Series[-Log[Product[(1 - k x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 42; Rest[CoefficientList[Series[Sum[k^3 x^k/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Sum[d^(n/d + 2), {d, Divisors[n]}]; Table[a[n], {n, 1, 42}]
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>=1} k^3*x^k/(1 - k*x^k).
a(n) = Sum_{d|n} d^(n/d+2).
a(p) = p^3 + 1 where p is a prime.
From Seiichi Manyama, Jun 24 2019: (Start)
Suppose given two sequences f(n) and g(n), n>0, we define a new sequence a(n), n>0, by a(n) = Sum_{d|n} d*f(d)*g(d)^(n/d).
L.g.f.: -log(Product_{n>0} (1 - g(n)*x^n)^f(n)) = Sum_{n>0} a(n)*x^n/n. (See A266964.)
If we set f(n) = n and g(n) = n, we get this sequence. (End)

A353992 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} d^(k/d + 1) )/k.

Original entry on oeis.org

1, 7, 41, 314, 2194, 22764, 195348, 2374224, 27940176, 384636960, 4673720160, 95522440320, 1323221996160, 23481816503040, 489968947641600, 10853692580505600, 190580382936115200, 5408424680491929600, 105077728210820198400, 3399507785578641408000
Offset: 1

Views

Author

Seiichi Manyama, Aug 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[DivisorSum[k, #^(k/# + 1) &]/k, {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Aug 06 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, d^(k/d+1))/k);
    
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, (k/d)^d/d));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k))/(1-x)))

Formula

a(n) = n! * Sum_{k=1..n} A078308(k)/k.
a(n) = n! * Sum_{k=1..n} Sum_{d|k} (k/d)^d / d.
E.g.f.: -(1/(1-x)) * Sum_{k>0} log(1 - k * x^k).

A354848 a(n) = (n-1)! * Sum_{d|n} d^(n/d + 1).

Original entry on oeis.org

1, 5, 20, 150, 624, 9600, 36000, 811440, 6572160, 105235200, 442713600, 39437798400, 81430272000, 4956708556800, 137741700096000, 3014189418240000, 6067609067520000, 1977977787641856000, 2317659281473536000, 1297953221362237440000
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n - 1)! * DivisorSum[n, #^(n/# + 1) &]; Array[a, 20] (* Amiram Eldar, Jun 08 2022 *)
  • PARI
    a(n) = (n-1)!*sumdiv(n, d, d^(n/d+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k))))

Formula

a(n) = (n-1)! * A078308(n).
E.g.f.: -Sum_{k>0} log(1 - k * x^k).
If p is prime, a(p) = (p-1)! + p * p!.

A022736 Expansion of 1/Product_{m>=1} (1 - m*q^m)^12.

Original entry on oeis.org

1, 12, 102, 688, 4029, 21156, 102246, 461448, 1967658, 7990996, 31110432, 116685288, 423366831, 1490904528, 5110173678, 17088259888, 55862240688, 178836472032, 561532752086, 1731639278904, 5250722230962
Offset: 0

Views

Author

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 12, g(n) = n. - Seiichi Manyama, Aug 16 2023

Crossrefs

Column k=12 of A297328.
Cf. A078308.

Programs

  • Magma
    n:=50; R:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^12:m in [1..n]])); // G. C. Greubel, Jul 25 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^-12, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 25 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^-12)) \\ G. C. Greubel, Jul 25 2018
    

Formula

a(0) = 1; a(n) = (12/n) * Sum_{k=1..n} A078308(k) * a(n-k). - Seiichi Manyama, Aug 16 2023

A022741 Expansion of 1/Product_{m>=1} (1 - m*q^m)^17.

Original entry on oeis.org

1, 17, 187, 1598, 11594, 74477, 435268, 2355265, 11950456, 57389960, 262741086, 1153256370, 4875584955, 19928324460, 79000508546, 304554050669, 1144374191351, 4199521413019, 15076785650771
Offset: 0

Views

Author

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 17, g(n) = n. - Seiichi Manyama, Aug 16 2023

Crossrefs

Column k=17 of A297328.
Cf. A078308.

Formula

a(0) = 1; a(n) = (17/n) * Sum_{k=1..n} A078308(k) * a(n-k). - Seiichi Manyama, Aug 16 2023
Showing 1-10 of 30 results. Next