cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A266964 Expansion of Product_{k>=1} (1 - k*x^k)^k.

Original entry on oeis.org

1, -1, -4, -5, -3, 23, 44, 104, 70, -93, -465, -1155, -1882, -1904, 804, 6195, 18755, 33296, 47327, 35198, -28493, -176199, -453792, -805453, -1126396, -1028297, -18994, 2946491, 8248080, 16444480, 25436984, 30736635, 22263981, -16098311, -102681575
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2016

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1-k*q^k)^k: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series(mul((1-k*x^k)^k,k=1..n),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1-k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    (* More efficient program: *) nmax = 40; s = 1-x; Do[s*=Sum[Binomial[k, j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax]
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017
    
  • Ruby
    def s(f_ary, g_ary, n)
      s = 0
      (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}
      s
    end
    def A(f_ary, g_ary, n)
      ary = [1]
      a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    def A266964(n)
      A((0..n).map{|i| -i}, (0..n).to_a, n)
    end
    p A266964(50) # Seiichi Manyama, Nov 18 2017
    

Formula

a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} (Sum_{d|k} d^(2+k/d)) * a(n-k) for n > 0. - Seiichi Manyama, Nov 02 2017
From Seiichi Manyama, Nov 14 2017: (Start)
A generalized Euler transform.
Suppose given two sequences f(n) and g(n), n>0, we define a new sequence a(n), n>=0, by Product_{n>0} (1 - g(n)*x^n)^(-f(n)) = a(0) + a(1)*x + a(2)*x^2 + ...
Since Product_{n>0} (1 - g(n)*x^n)^(-f(n)) = exp(Sum_{n>0} (Sum_{d|n} d*f(d)*g(d)^(n/d))*x^n/n), we see that a(n) is given explicitly by a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*f(d)*g(d)^(n/d).
Examples:
1. If we set g(n) = 1, we get the usual Euler transform.
2. If we set f(n) = -h(n) and g(n) = -1, we get the weighout transform (cf. A026007).
3. If we set f(n) = -n and g(n) = n, we get this sequence.
(End)

A308502 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n/d + k).

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 9, 1, 17, 28, 25, 6, 1, 33, 82, 81, 26, 24, 1, 65, 244, 289, 126, 80, 8, 1, 129, 730, 1089, 626, 330, 50, 41, 1, 257, 2188, 4225, 3126, 1604, 344, 161, 37, 1, 513, 6562, 16641, 15626, 8634, 2402, 833, 163, 68, 1, 1025, 19684, 66049, 78126, 49100, 16808, 5249, 973, 290, 12
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			Square array begins:
    1,  1,   1,    1,    1,     1, ...
    3,  5,   9,   17,   33,    65, ...
    4, 10,  28,   82,  244,   730, ...
    9, 25,  81,  289, 1089,  4225, ...
    6, 26, 126,  626, 3126, 15626, ...
   24, 80, 330, 1604, 8634, 49100, ...
		

Crossrefs

Columns k=0..2 give A055225, A078308, A296601.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(n/# + k) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - j*x^j)^(j^(k-1))).
Showing 1-2 of 2 results.