Muniru A Asiru has authored 104 sequences. Here are the ten most recent ones:
A323874
Irregular triangle of 13^k mod prime(n).
Original entry on oeis.org
1, 1, 1, 3, 4, 2, 1, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 0, 1, 13, 16, 4, 1, 13, 17, 12, 4, 14, 11, 10, 16, 18, 6, 2, 7, 15, 5, 8, 9, 3, 1, 13, 8, 12, 18, 4, 6, 9, 2, 3, 16, 1, 13, 24, 22, 25, 6, 20, 28, 16, 5, 7, 4, 23, 9, 1, 13, 14, 27, 10, 6, 16, 22, 7, 29, 5
Offset: 1
The first 10 rows are:
1
1
1, 3, 4, 2
1, 6
1, 2, 4, 8, 5, 10, 9, 7, 3, 6
0
1, 13, 16, 4
1, 13, 17, 12, 4, 14, 11, 10, 16, 18, 6, 2, 7, 15, 5, 8, 9, 3
1, 13, 8, 12, 18, 4, 6, 9, 2, 3, 16
1, 13, 24, 22, 25, 6, 20, 28, 16, 5, 7, 4, 23, 9
-
A000040:=Filtered([1..350],IsPrime);; p:=6;;
R:=List([1..Length(A000040)],n->OrderMod(A000040[p],A000040[n]));;
a1:=List([1..p-1],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])));;
a:=Flat(Concatenation(a1,[0],List([p+1..2*p],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])))));; Print(a);
-
T:= n-> (p-> `if`(p=13, 0, seq(13&^k mod p,
k=0..numtheory[order](13, p)-1)))(ithprime(n)):
seq(T(n), n=1..15); # Alois P. Heinz, Feb 06 2019
-
With[{q = 13}, Table[If[p == q, {0}, Array[PowerMod[q, #, p] &, MultiplicativeOrder[q, p], 0]], {p, Prime@ Range@ 11}]] // Flatten (* Michael De Vlieger, Feb 25 2019 *)
A323873
Irregular triangle of 11^k mod prime(n).
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 2, 0, 1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1, 11, 2, 5, 4, 10, 8, 3, 16, 6, 15, 12, 13, 7, 9, 14, 1, 11, 7, 1, 11, 6, 20, 13, 5, 9, 7, 8, 19, 2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21, 1, 11, 5, 26, 25, 14, 9, 12, 16, 2, 22, 10, 23, 21, 28
Offset: 1
The first 9 rows are:
1;
1, 2;
1;
1, 4, 2;
0;
1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6;
1, 11, 2, 5, 4, 10, 8, 3, 16, 6, 15, 12, 13, 7, 9, 14;
1, 11, 7;
1, 11, 6, 20, 13, 5, 9, 7, 8, 19, 2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21;
...
-
A000040:=Filtered([1..350],IsPrime);; p:=5;;
R:=List([1..Length(A000040)],n->OrderMod(A000040[p],A000040[n]));;
a1:=List([1..p-1],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])));;
a:=Flat(Concatenation(a1,[0],List([p+1..2*p],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])))));; Print(a);
-
T:= n-> (p-> `if`(p=11, 0, seq(11&^k mod p,
k=0..numtheory[order](11, p)-1)))(ithprime(n)):
seq(T(n), n=1..15); # Alois P. Heinz, Feb 06 2019
-
Table[If[p == 11, {0}, Array[PowerMod[11, #, p] &, MultiplicativeOrder[11, p], 0]], {p, Prime@ Range@ 10}] (* Michael De Vlieger, Feb 25 2019 *)
Original entry on oeis.org
3, 5, 7, 31, 37, 41, 61, 103, 137, 2053, 125887, 968467
Offset: 1
-
Filtered([1..400],p->IsPrime(p) and IsPrime(141*2^p+1));
-
select(p->isprime(p) and isprime(141*2^p+1),[$1..400]);
-
Select[Prime[Range[140]],PrimeQ[141*2^#+1]&] (* Harvey P. Dale, Sep 04 2023 *)
A320865
Powers of 2 with initial digit 9.
Original entry on oeis.org
9007199254740992, 9223372036854775808, 9444732965739290427392, 9671406556917033397649408, 9903520314283042199192993792, 91343852333181432387730302044767688728495783936, 93536104789177786765035829293842113257979682750464
Offset: 1
-
Filtered(List([0..200],n->2^n),i->ListOfDigits(i)[1]=9);
-
select(x->"9"=""||x[1],[2^n$n=0..200])[];
-
Select[2^Range[200], IntegerDigits[#][[1]] == 9 &] (* Amiram Eldar, Nov 21 2018 *)
-
select(x->(digits(x)[1]==9), vector(200, n, 2^n)) \\ Michel Marcus, Nov 21 2018
A320864
Powers of 2 with initial digit 8.
Original entry on oeis.org
8, 8192, 8388608, 8589934592, 8796093022208, 81129638414606681695789005144064, 83076749736557242056487941267521536, 85070591730234615865843651857942052864, 87112285931760246646623899502532662132736, 89202980794122492566142873090593446023921664
Offset: 1
-
Filtered(List([0..200],n->2^n),i->ListOfDigits(i)[1]=8);
-
select(x->"8"=""||x[1],[2^n$n=0..200])[];
-
Select[2^Range[200], IntegerDigits[#][[1]] == 8 &] (* Amiram Eldar, Nov 21 2018 *)
-
select(x->(digits(x)[1]==8), vector(200, n, 2^n)) \\ Michel Marcus, Nov 21 2018
A320859
Powers of 2 with initial digit 3.
Original entry on oeis.org
32, 32768, 33554432, 34359738368, 35184372088832, 36028797018963968, 36893488147419103232, 37778931862957161709568, 302231454903657293676544, 38685626227668133590597632, 309485009821345068724781056, 39614081257132168796771975168, 316912650057057350374175801344
Offset: 1
-
Filtered(List([0..120],n->2^n),i->ListOfDigits(i)[1]=3);
-
[2^n: n in [1..100] | Intseq(2^n)[#Intseq(2^n)] eq 3]; // G. C. Greubel, Oct 24 2018
-
select(x->"3"=""||x[1],[2^n$n=0..120])[];
-
Select[2^Range[0, 100], First[IntegerDigits[#]] == 3 &] (* G. C. Greubel, Oct 24 2018 *)
-
lista(nn) = {for(n=1, nn, x = 2^n; if (digits(x=2^n)[1] == 3, print1(x, ", ")););} \\ Michel Marcus, Oct 25 2018
A320860
Powers of 2 with initial digit 4.
Original entry on oeis.org
4, 4096, 4194304, 4294967296, 4398046511104, 4503599627370496, 4611686018427387904, 4722366482869645213696, 4835703278458516698824704, 4951760157141521099596496896, 40564819207303340847894502572032, 41538374868278621028243970633760768
Offset: 1
-
Filtered(List([0..150],n->2^n),i->ListOfDigits(i)[1]=4);
-
[2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 4]; // G. C. Greubel, Oct 27 2018
-
select(x->"4"=""||x[1],[2^n$n=0..150])[];
-
Select[2^Range[160], First[IntegerDigits[#]] == 4 &] (* G. C. Greubel, Oct 27 2018 *)
-
select(x->(digits(x)[1]==4), vector(200, n, 2^n)) \\ Michel Marcus, Oct 26 2018
A320862
Powers of 2 with initial digit 6.
Original entry on oeis.org
64, 65536, 67108864, 68719476736, 604462909807314587353088, 618970019642690137449562112, 633825300114114700748351602688, 649037107316853453566312041152512, 664613997892457936451903530140172288, 680564733841876926926749214863536422912
Offset: 1
-
Filtered(List([0..180],n->2^n),i->ListOfDigits(i)[1]=6);
-
[2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 6]; // G. C. Greubel, Oct 27 2018
-
select(x->"6"=""||x[1],[2^n$n=0..180])[];
-
Select[2^Range[160], First[IntegerDigits[#]] == 6 &] (* G. C. Greubel, Oct 27 2018 *)
-
select(x->(digits(x)[1]==6), vector(200, n, 2^n)) \\ Michel Marcus, Oct 26 2018
A320863
Powers of 2 with initial digit 7.
Original entry on oeis.org
70368744177664, 72057594037927936, 73786976294838206464, 75557863725914323419136, 77371252455336267181195264, 79228162514264337593543950336, 713623846352979940529142984724747568191373312, 730750818665451459101842416358141509827966271488
Offset: 1
-
Filtered(List([0..180],n->2^n),i->ListOfDigits(i)[1]=7);
-
[2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 7]; // G. C. Greubel, Oct 27 2018
-
select(x->"7"=""||x[1],[2^n$n=0..180])[];
-
Select[2^Range[160], First[IntegerDigits[#]] == 7 &] (* G. C. Greubel, Oct 27 2018 *)
-
select(x->(digits(x)[1]==7), vector(200, n, 2^n)) \\ Michel Marcus, Oct 27 2018
A320861
Powers of 2 with initial digit 5.
Original entry on oeis.org
512, 524288, 536870912, 549755813888, 562949953421312, 576460752303423488, 590295810358705651712, 5070602400912917605986812821504, 5192296858534827628530496329220096, 5316911983139663491615228241121378304, 5444517870735015415413993718908291383296
Offset: 1
-
Filtered(List([0..160],n->2^n),i->ListOfDigits(i)[1]=5);
-
[2^n: n in [1..200] | Intseq(2^n)[#Intseq(2^n)] eq 5]; // Vincenzo Librandi, Oct 25 2018
-
select(x->"5"=""||x[1],[2^n$n=0..160])[];
# Alternative:
Res:= NULL: count:= 0:
for k from 1 to 49 do
n:= ilog2(6*10^k);
if n > ilog2(5*10^k) then count:= count+1;
Res:= Res, 2^n;
fi
od:
Res; # Robert Israel, Oct 26 2018
-
Select[2^Range[200], First[IntegerDigits[#]]==5 &] (* Vincenzo Librandi, Oct 25 2018 *)
-
lista(nn) = {for(n=1, nn, x = 2^n; if (digits(x=2^n)[1] == 5, print1(x, ", ")););} \\ Michel Marcus, Oct 25 2018
Comments