cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Muniru A Asiru

Muniru A Asiru's wiki page.

Muniru A Asiru has authored 104 sequences. Here are the ten most recent ones:

A323874 Irregular triangle of 13^k mod prime(n).

Original entry on oeis.org

1, 1, 1, 3, 4, 2, 1, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 0, 1, 13, 16, 4, 1, 13, 17, 12, 4, 14, 11, 10, 16, 18, 6, 2, 7, 15, 5, 8, 9, 3, 1, 13, 8, 12, 18, 4, 6, 9, 2, 3, 16, 1, 13, 24, 22, 25, 6, 20, 28, 16, 5, 7, 4, 23, 9, 1, 13, 14, 27, 10, 6, 16, 22, 7, 29, 5
Offset: 1

Author

Muniru A Asiru, Feb 04 2019

Keywords

Comments

Length of the n-th row (n != 6) is the order of 13 modulo the n-th prime.
Except for the sixth row, the first term of each row is 1.

Examples

			The first 10 rows are:
  1
  1
  1, 3, 4, 2
  1, 6
  1, 2, 4, 8, 5, 10, 9, 7, 3, 6
  0
  1, 13, 16, 4
  1, 13, 17, 12, 4, 14, 11, 10, 16, 18, 6, 2, 7, 15, 5, 8, 9, 3
  1, 13, 8, 12, 18, 4, 6, 9, 2, 3, 16
  1, 13, 24, 22, 25, 6, 20, 28, 16, 5, 7, 4, 23, 9
		

Crossrefs

Cf. A000040.
Cf. A201908 (2^k), A201909 (3^k), A201910 (5^k), A201911 (7^k), A323873 (11^k), this sequence (13^k).

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);; p:=6;;
    R:=List([1..Length(A000040)],n->OrderMod(A000040[p],A000040[n]));;
    a1:=List([1..p-1],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])));;
    a:=Flat(Concatenation(a1,[0],List([p+1..2*p],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])))));; Print(a);
  • Maple
    T:= n-> (p-> `if`(p=13, 0, seq(13&^k mod p,
             k=0..numtheory[order](13, p)-1)))(ithprime(n)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Feb 06 2019
  • Mathematica
    With[{q = 13}, Table[If[p == q, {0}, Array[PowerMod[q, #, p] &, MultiplicativeOrder[q, p], 0]], {p, Prime@ Range@ 11}]] // Flatten (* Michael De Vlieger, Feb 25 2019 *)

A323873 Irregular triangle of 11^k mod prime(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 2, 0, 1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1, 11, 2, 5, 4, 10, 8, 3, 16, 6, 15, 12, 13, 7, 9, 14, 1, 11, 7, 1, 11, 6, 20, 13, 5, 9, 7, 8, 19, 2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21, 1, 11, 5, 26, 25, 14, 9, 12, 16, 2, 22, 10, 23, 21, 28
Offset: 1

Author

Muniru A Asiru, Feb 04 2019

Keywords

Comments

Length of the n-th row (n != 5) is the order of 11 modulo the n-th prime.
Except for the fifth row, the first term of each row is 1.

Examples

			The first 9 rows are:
  1;
  1,  2;
  1;
  1,  4, 2;
  0;
  1, 11, 4,  5,  3,  7, 12, 2,  9,  8, 10,  6;
  1, 11, 2,  5,  4, 10,  8, 3, 16,  6, 15, 12, 13,  7, 9, 14;
  1, 11, 7;
  1, 11, 6, 20, 13,  5,  9, 7,  8, 19,  2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21;
  ...
		

Crossrefs

Cf. A201908 (2^k), A201909 (3^k), A201910 (5^k), A201911 (7^k), this sequence (11^k), A323874 (13^k).
Cf. A000040.

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);; p:=5;;
    R:=List([1..Length(A000040)],n->OrderMod(A000040[p],A000040[n]));;
    a1:=List([1..p-1],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])));;
    a:=Flat(Concatenation(a1,[0],List([p+1..2*p],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])))));; Print(a);
  • Maple
    T:= n-> (p-> `if`(p=11, 0, seq(11&^k mod p,
             k=0..numtheory[order](11, p)-1)))(ithprime(n)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Feb 06 2019
  • Mathematica
    Table[If[p == 11, {0}, Array[PowerMod[11, #, p] &, MultiplicativeOrder[11, p], 0]], {p, Prime@ Range@ 10}] (* Michael De Vlieger, Feb 25 2019 *)

A322749 Primes in A032420.

Original entry on oeis.org

3, 5, 7, 31, 37, 41, 61, 103, 137, 2053, 125887, 968467
Offset: 1

Author

Muniru A Asiru, Dec 25 2018

Keywords

Comments

Equivalently, primes p such that 141*2^p+1 is prime.

Crossrefs

Subsequence of A032420.

Programs

  • GAP
    Filtered([1..400],p->IsPrime(p) and IsPrime(141*2^p+1));
  • Maple
    select(p->isprime(p) and isprime(141*2^p+1),[$1..400]);
  • Mathematica
    Select[Prime[Range[140]],PrimeQ[141*2^#+1]&] (* Harvey P. Dale, Sep 04 2023 *)

A320865 Powers of 2 with initial digit 9.

Original entry on oeis.org

9007199254740992, 9223372036854775808, 9444732965739290427392, 9671406556917033397649408, 9903520314283042199192993792, 91343852333181432387730302044767688728495783936, 93536104789177786765035829293842113257979682750464
Offset: 1

Author

Muniru A Asiru, Nov 21 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217402 (numbers starting with 9).
Powers of 2 with initial digit k, (k = 1..9): A067488, A067480, A320859, A320860, A320861, A320862, A320863, A320864, this sequence.

Programs

  • GAP
    Filtered(List([0..200],n->2^n),i->ListOfDigits(i)[1]=9);
    
  • Maple
    select(x->"9"=""||x[1],[2^n$n=0..200])[];
  • Mathematica
    Select[2^Range[200], IntegerDigits[#][[1]] == 9 &] (* Amiram Eldar, Nov 21 2018 *)
  • PARI
    select(x->(digits(x)[1]==9), vector(200, n, 2^n)) \\ Michel Marcus, Nov 21 2018

A320864 Powers of 2 with initial digit 8.

Original entry on oeis.org

8, 8192, 8388608, 8589934592, 8796093022208, 81129638414606681695789005144064, 83076749736557242056487941267521536, 85070591730234615865843651857942052864, 87112285931760246646623899502532662132736, 89202980794122492566142873090593446023921664
Offset: 1

Author

Muniru A Asiru, Nov 21 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217401 (numbers starting with 8).
Powers of 2 with initial digit k, (k = 1..8): A067488, A067480, A320859, A320860, A320861, A320862, A320863, this sequence.

Programs

  • GAP
    Filtered(List([0..200],n->2^n),i->ListOfDigits(i)[1]=8);
    
  • Maple
    select(x->"8"=""||x[1],[2^n$n=0..200])[];
  • Mathematica
    Select[2^Range[200], IntegerDigits[#][[1]] == 8 &] (* Amiram Eldar, Nov 21 2018 *)
  • PARI
    select(x->(digits(x)[1]==8), vector(200, n, 2^n)) \\ Michel Marcus, Nov 21 2018

A320859 Powers of 2 with initial digit 3.

Original entry on oeis.org

32, 32768, 33554432, 34359738368, 35184372088832, 36028797018963968, 36893488147419103232, 37778931862957161709568, 302231454903657293676544, 38685626227668133590597632, 309485009821345068724781056, 39614081257132168796771975168, 316912650057057350374175801344
Offset: 1

Author

Muniru A Asiru, Oct 22 2018

Keywords

Crossrefs

Cf. A000079 (Powers of 2), A008952 (leading digit of 2^n).
Powers of 2 with initial digit k, (k = 1..4): A067488, A067480, this sequence, A320860.
Cf. A172404.

Programs

  • GAP
    Filtered(List([0..120],n->2^n),i->ListOfDigits(i)[1]=3);
    
  • Magma
    [2^n: n in [1..100] | Intseq(2^n)[#Intseq(2^n)] eq 3]; // G. C. Greubel, Oct 24 2018
    
  • Maple
    select(x->"3"=""||x[1],[2^n$n=0..120])[];
  • Mathematica
    Select[2^Range[0, 100], First[IntegerDigits[#]] == 3 &] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    lista(nn) = {for(n=1, nn, x = 2^n; if (digits(x=2^n)[1] == 3, print1(x, ", ")););} \\ Michel Marcus, Oct 25 2018

Formula

a(n) = 2^A172404(n).

A320860 Powers of 2 with initial digit 4.

Original entry on oeis.org

4, 4096, 4194304, 4294967296, 4398046511104, 4503599627370496, 4611686018427387904, 4722366482869645213696, 4835703278458516698824704, 4951760157141521099596496896, 40564819207303340847894502572032, 41538374868278621028243970633760768
Offset: 1

Author

Muniru A Asiru, Oct 22 2018

Keywords

Comments

Differs from A067482 first at n = 11.

Crossrefs

Cf. A000079 (Powers of 2), A008952 (leading digit of 2^n), A217397 (numbers starting with 4).
Powers of 2 with initial digit k, (k = 1..4): A067488, A067480, A320859, this sequence.

Programs

  • GAP
    Filtered(List([0..150],n->2^n),i->ListOfDigits(i)[1]=4);
    
  • Magma
    [2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 4]; // G. C. Greubel, Oct 27 2018
  • Maple
    select(x->"4"=""||x[1],[2^n$n=0..150])[];
  • Mathematica
    Select[2^Range[160], First[IntegerDigits[#]] == 4 &] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    select(x->(digits(x)[1]==4), vector(200, n, 2^n)) \\ Michel Marcus, Oct 26 2018
    

A320862 Powers of 2 with initial digit 6.

Original entry on oeis.org

64, 65536, 67108864, 68719476736, 604462909807314587353088, 618970019642690137449562112, 633825300114114700748351602688, 649037107316853453566312041152512, 664613997892457936451903530140172288, 680564733841876926926749214863536422912
Offset: 1

Author

Muniru A Asiru, Oct 23 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217399 (numbers starting with 6).
Powers of 2 with initial digit k, (k = 1..6): A067488, A067480, A320859, A320860, A320861, this sequence.

Programs

  • GAP
    Filtered(List([0..180],n->2^n),i->ListOfDigits(i)[1]=6);
    
  • Magma
    [2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 6]; // G. C. Greubel, Oct 27 2018
  • Maple
    select(x->"6"=""||x[1],[2^n$n=0..180])[];
  • Mathematica
    Select[2^Range[160], First[IntegerDigits[#]] == 6 &] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    select(x->(digits(x)[1]==6), vector(200, n, 2^n)) \\ Michel Marcus, Oct 26 2018
    

A320863 Powers of 2 with initial digit 7.

Original entry on oeis.org

70368744177664, 72057594037927936, 73786976294838206464, 75557863725914323419136, 77371252455336267181195264, 79228162514264337593543950336, 713623846352979940529142984724747568191373312, 730750818665451459101842416358141509827966271488
Offset: 1

Author

Muniru A Asiru, Oct 26 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217400 (numbers starting with 7).
Powers of 2 with initial digit k, (k = 1..7): A067488, A067480, A320859, A320860, A320861, A320862, this sequence.

Programs

  • GAP
    Filtered(List([0..180],n->2^n),i->ListOfDigits(i)[1]=7);
    
  • Magma
    [2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 7]; // G. C. Greubel, Oct 27 2018
  • Maple
    select(x->"7"=""||x[1],[2^n$n=0..180])[];
  • Mathematica
    Select[2^Range[160], First[IntegerDigits[#]] == 7 &] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    select(x->(digits(x)[1]==7), vector(200, n, 2^n)) \\ Michel Marcus, Oct 27 2018
    

A320861 Powers of 2 with initial digit 5.

Original entry on oeis.org

512, 524288, 536870912, 549755813888, 562949953421312, 576460752303423488, 590295810358705651712, 5070602400912917605986812821504, 5192296858534827628530496329220096, 5316911983139663491615228241121378304, 5444517870735015415413993718908291383296
Offset: 1

Author

Muniru A Asiru, Oct 23 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n).
Powers of 2 with initial digit k, (k = 1..5): A067488, A067480, A320859, A320860, this sequence.

Programs

  • GAP
    Filtered(List([0..160],n->2^n),i->ListOfDigits(i)[1]=5);
    
  • Magma
    [2^n: n in [1..200] | Intseq(2^n)[#Intseq(2^n)] eq 5]; // Vincenzo Librandi, Oct 25 2018
  • Maple
    select(x->"5"=""||x[1],[2^n$n=0..160])[];
    # Alternative:
    Res:= NULL: count:= 0:
    for k from 1 to 49 do
       n:= ilog2(6*10^k);
       if n > ilog2(5*10^k) then count:= count+1;
         Res:= Res, 2^n;
       fi
    od:
    Res; # Robert Israel, Oct 26 2018
  • Mathematica
    Select[2^Range[200], First[IntegerDigits[#]]==5 &] (* Vincenzo Librandi, Oct 25 2018 *)
  • PARI
    lista(nn) = {for(n=1, nn, x = 2^n; if (digits(x=2^n)[1] == 5, print1(x, ", ")););} \\ Michel Marcus, Oct 25 2018