cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A320860 Powers of 2 with initial digit 4.

Original entry on oeis.org

4, 4096, 4194304, 4294967296, 4398046511104, 4503599627370496, 4611686018427387904, 4722366482869645213696, 4835703278458516698824704, 4951760157141521099596496896, 40564819207303340847894502572032, 41538374868278621028243970633760768
Offset: 1

Views

Author

Muniru A Asiru, Oct 22 2018

Keywords

Comments

Differs from A067482 first at n = 11.

Crossrefs

Cf. A000079 (Powers of 2), A008952 (leading digit of 2^n), A217397 (numbers starting with 4).
Powers of 2 with initial digit k, (k = 1..4): A067488, A067480, A320859, this sequence.

Programs

  • GAP
    Filtered(List([0..150],n->2^n),i->ListOfDigits(i)[1]=4);
    
  • Magma
    [2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 4]; // G. C. Greubel, Oct 27 2018
  • Maple
    select(x->"4"=""||x[1],[2^n$n=0..150])[];
  • Mathematica
    Select[2^Range[160], First[IntegerDigits[#]] == 4 &] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    select(x->(digits(x)[1]==4), vector(200, n, 2^n)) \\ Michel Marcus, Oct 26 2018
    

A320861 Powers of 2 with initial digit 5.

Original entry on oeis.org

512, 524288, 536870912, 549755813888, 562949953421312, 576460752303423488, 590295810358705651712, 5070602400912917605986812821504, 5192296858534827628530496329220096, 5316911983139663491615228241121378304, 5444517870735015415413993718908291383296
Offset: 1

Views

Author

Muniru A Asiru, Oct 23 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n).
Powers of 2 with initial digit k, (k = 1..5): A067488, A067480, A320859, A320860, this sequence.

Programs

  • GAP
    Filtered(List([0..160],n->2^n),i->ListOfDigits(i)[1]=5);
    
  • Magma
    [2^n: n in [1..200] | Intseq(2^n)[#Intseq(2^n)] eq 5]; // Vincenzo Librandi, Oct 25 2018
  • Maple
    select(x->"5"=""||x[1],[2^n$n=0..160])[];
    # Alternative:
    Res:= NULL: count:= 0:
    for k from 1 to 49 do
       n:= ilog2(6*10^k);
       if n > ilog2(5*10^k) then count:= count+1;
         Res:= Res, 2^n;
       fi
    od:
    Res; # Robert Israel, Oct 26 2018
  • Mathematica
    Select[2^Range[200], First[IntegerDigits[#]]==5 &] (* Vincenzo Librandi, Oct 25 2018 *)
  • PARI
    lista(nn) = {for(n=1, nn, x = 2^n; if (digits(x=2^n)[1] == 5, print1(x, ", ")););} \\ Michel Marcus, Oct 25 2018
    

A320862 Powers of 2 with initial digit 6.

Original entry on oeis.org

64, 65536, 67108864, 68719476736, 604462909807314587353088, 618970019642690137449562112, 633825300114114700748351602688, 649037107316853453566312041152512, 664613997892457936451903530140172288, 680564733841876926926749214863536422912
Offset: 1

Views

Author

Muniru A Asiru, Oct 23 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217399 (numbers starting with 6).
Powers of 2 with initial digit k, (k = 1..6): A067488, A067480, A320859, A320860, A320861, this sequence.

Programs

  • GAP
    Filtered(List([0..180],n->2^n),i->ListOfDigits(i)[1]=6);
    
  • Magma
    [2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 6]; // G. C. Greubel, Oct 27 2018
  • Maple
    select(x->"6"=""||x[1],[2^n$n=0..180])[];
  • Mathematica
    Select[2^Range[160], First[IntegerDigits[#]] == 6 &] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    select(x->(digits(x)[1]==6), vector(200, n, 2^n)) \\ Michel Marcus, Oct 26 2018
    

A320863 Powers of 2 with initial digit 7.

Original entry on oeis.org

70368744177664, 72057594037927936, 73786976294838206464, 75557863725914323419136, 77371252455336267181195264, 79228162514264337593543950336, 713623846352979940529142984724747568191373312, 730750818665451459101842416358141509827966271488
Offset: 1

Views

Author

Muniru A Asiru, Oct 26 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217400 (numbers starting with 7).
Powers of 2 with initial digit k, (k = 1..7): A067488, A067480, A320859, A320860, A320861, A320862, this sequence.

Programs

  • GAP
    Filtered(List([0..180],n->2^n),i->ListOfDigits(i)[1]=7);
    
  • Magma
    [2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 7]; // G. C. Greubel, Oct 27 2018
  • Maple
    select(x->"7"=""||x[1],[2^n$n=0..180])[];
  • Mathematica
    Select[2^Range[160], First[IntegerDigits[#]] == 7 &] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    select(x->(digits(x)[1]==7), vector(200, n, 2^n)) \\ Michel Marcus, Oct 27 2018
    

A320864 Powers of 2 with initial digit 8.

Original entry on oeis.org

8, 8192, 8388608, 8589934592, 8796093022208, 81129638414606681695789005144064, 83076749736557242056487941267521536, 85070591730234615865843651857942052864, 87112285931760246646623899502532662132736, 89202980794122492566142873090593446023921664
Offset: 1

Views

Author

Muniru A Asiru, Nov 21 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217401 (numbers starting with 8).
Powers of 2 with initial digit k, (k = 1..8): A067488, A067480, A320859, A320860, A320861, A320862, A320863, this sequence.

Programs

  • GAP
    Filtered(List([0..200],n->2^n),i->ListOfDigits(i)[1]=8);
    
  • Maple
    select(x->"8"=""||x[1],[2^n$n=0..200])[];
  • Mathematica
    Select[2^Range[200], IntegerDigits[#][[1]] == 8 &] (* Amiram Eldar, Nov 21 2018 *)
  • PARI
    select(x->(digits(x)[1]==8), vector(200, n, 2^n)) \\ Michel Marcus, Nov 21 2018

A320865 Powers of 2 with initial digit 9.

Original entry on oeis.org

9007199254740992, 9223372036854775808, 9444732965739290427392, 9671406556917033397649408, 9903520314283042199192993792, 91343852333181432387730302044767688728495783936, 93536104789177786765035829293842113257979682750464
Offset: 1

Views

Author

Muniru A Asiru, Nov 21 2018

Keywords

Crossrefs

Cf. A000079 (powers of 2), A008952 (leading digit of 2^n), A217402 (numbers starting with 9).
Powers of 2 with initial digit k, (k = 1..9): A067488, A067480, A320859, A320860, A320861, A320862, A320863, A320864, this sequence.

Programs

  • GAP
    Filtered(List([0..200],n->2^n),i->ListOfDigits(i)[1]=9);
    
  • Maple
    select(x->"9"=""||x[1],[2^n$n=0..200])[];
  • Mathematica
    Select[2^Range[200], IntegerDigits[#][[1]] == 9 &] (* Amiram Eldar, Nov 21 2018 *)
  • PARI
    select(x->(digits(x)[1]==9), vector(200, n, 2^n)) \\ Michel Marcus, Nov 21 2018
Showing 1-6 of 6 results.