G. C. Greubel has authored 84 sequences. Here are the ten most recent ones:
A364705
Expansion of 1/(1 - 4*x - x^2 + x^3).
Original entry on oeis.org
1, 4, 17, 71, 297, 1242, 5194, 21721, 90836, 379871, 1588599, 6643431, 27782452, 116184640, 485877581, 2031912512, 8497342989, 35535406887, 148607058025, 621466295998, 2598936835130, 10868606578493, 45451896853104, 190077257155779, 794892318897727, 3324194635893583
Offset: 0
-
I:=[1,4,17]; [n le 3 select I[n] else 4*Self(n-1) +Self(n-2) -Self(n-3): n in [1..41]];
-
LinearRecurrence[{4,1,-1}, {1,4,17}, 41]
-
@CachedFunction
def a(n): # a = A364705
if (n<3): return (1,4,17)[n]
else: return 4*a(n-1) +a(n-2) -a(n-3)
[a(n) for n in range(41)]
A358027
Expansion of g.f.: (1 + x - 2*x^2 + 2*x^4)/((1-x)*(1-3*x^2)).
Original entry on oeis.org
1, 2, 3, 6, 11, 20, 35, 62, 107, 188, 323, 566, 971, 1700, 2915, 5102, 8747, 15308, 26243, 45926, 78731, 137780, 236195, 413342, 708587, 1240028, 2125763, 3720086, 6377291, 11160260, 19131875, 33480782, 57395627
Offset: 0
-
I:=[3,6,11]; [1,2] cat [n le 3 select I[n] else Self(n-1) +3*Self(n-2) -3*Self(n-3): n in [1..60]];
-
LinearRecurrence[{1,3,-3}, {1,2,3,6,11}, 61]
-
def A254006(n): return 3^(n/2)*(1 + (-1)^n)/2
def A358027(n): return (1/3)*( 4*A254006(n) + 7*A254006(n-1) +2*int(n==0) + 2*int(n==1) - 3 )
[A358027(n) for n in (0..60)]
A356916
Irregular triangle A(n, q) = total number of labeled P_4 - free chordal graphs on n vertices and q edges, read by rows; also companion triangle to A058865.
Original entry on oeis.org
1, 3, 3, 1, 6, 15, 8, 12, 6, 1, 10, 45, 60, 75, 60, 80, 30, 30, 10, 1, 15, 105, 275, 420, 516, 625, 465, 540, 495, 276, 255, 80, 60, 15, 1, 21, 210, 910, 2100, 3192, 4767, 5355, 4830, 5845, 5061, 5397, 4725, 2730, 2625, 1932, 882, 630, 175, 105, 21, 1
Offset: 1
The irregular triangle begins as:
1;
3, 3, 1;
6, 15, 8, 12, 6, 1;
10, 45, 60, 75, 60, 80, 30, 30, 10, 1;
15, 105, 275, 420, 516, 625, 465, 540, 495, 276, 255, 80, 60, 15, 1;
- G. C. Greubel, Rows n = 2..30 of the irregular triangle, flattened
- R. Castelo and N. C. Wormald, Enumeration of P4-free chordal graphs.
- R. Castelo and N. C. Wormald, Enumeration of P4-Free chordal graphs, Graphs and Combinatorics, 19:467-474, 2003.
- M. C. Golumbic, Trivially perfect graphs, Discr. Math. 24(1) (1978), 105-107.
- T. H. Ma and J. P. Spinrad, Cycle-free partial orders and chordal comparability graphs, Order, 1991, 8:49-61.
- E. S. Wolk, A note on the comparability graph of a tree, Proc. Am. Math. Soc., 1965, 16:17-20.
-
t[n_, k_]:= t[n, k]= If[k==Binomial[n, 2], 1, Sum[Binomial[n, j]*(A[n-j, k-j*(2*n -1-j)/2] - t[n-j, k-j*(2*n-1-j)/2]), {j, n-2}]]; (* t = A058865 *)
A[n_, k_]:= A[n, k]= t[n, k] + Sum[Sum[Binomial[n-1, j-1]*t[j, m]*A[n-j, k-m], {j, n-1}], {m, 0, k}]; (* A = A356916 *)
Table[A[n, k], {n,2,12}, {k,Binomial[n, 2]}]//Flatten
-
A356916(n, q)={A058865(n, q) + sum(k=1, n-1, k*binomial(n, k)*sum(j=k-1, k*(k-1)/2, A058865(k, j)*A356916(n-k, q-j)))/n} \\ Edited: Code for A058865 should exist and be updated only there. - M. F. Hasler, Sep 26 2022
vector(7, n, vector(binomial(n+1,2), k, A356916(n+1, k)))
-
@CachedFunction
def t(n,k): # t = A058865
if (k==binomial(n,2)): return 1
else: return sum( binomial(n,j)*( A(n-j, k-j*(2*n-1-j)/2) - t(n-j, k-j*(2*n-1-j)/2) ) for j in (1..n-2) )
@CachedFunction
def A(n,k): # A = A356916
return t(n,k) + sum(sum( binomial(n-1,j-1)*t(j,m)*A(n-j,k-m) for j in (1..n-1) ) for m in (0..k) )
flatten([[A(n,k) for k in (1..binomial(n,2))] for n in (2..12)])
A352972
a(n) = Sum_{j=0..2*n} Sum_{k=0..j} A026536(j, k).
Original entry on oeis.org
1, 6, 35, 204, 1199, 7089, 42070, 250269, 1491262, 8896310, 53118352, 317373194, 1897253203, 11346582851, 67882263130, 406231442387, 2431626954934, 14558306758418, 87177151134954, 522110098886882, 3127380060424476, 18734897945679836, 112245303177542790, 672552484035697364, 4030148584900522009
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
A352972[n_]:= A352972[n]= Sum[T[j,k], {j,0,2*n}, {k,0,j}];
Table[A352972[n], {n,0,40}]
-
@CachedFunction
def T(n, k): # A026536
if k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A352972(n): return sum(sum(T(j,k) for k in (0..j)) for j in (0..2*n))
[A352972(n) for n in (3..40)]
A334824
Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).
Original entry on oeis.org
1, 3, 0, 15, 0, -1, 105, 0, -10, 0, 945, 0, -105, 0, 1, 10395, 0, -1260, 0, 21, 0, 135135, 0, -17325, 0, 378, 0, -1, 2027025, 0, -270270, 0, 6930, 0, -36, 0, 34459425, 0, -4729725, 0, 135135, 0, -990, 0, 1, 654729075, 0, -91891800, 0, 2837835, 0, -25740, 0, 55, 0, 13749310575, 0, -1964187225, 0, 64324260, 0, -675675, 0, 2145, 0, -1
Offset: 0
Polynomials:
g(0, x) = 1;
g(1, x) = 3*x;
g(2, x) = 15*x^2 - 1;
g(3, x) = 105*x^3 - 10*x;
g(4, x) = 945*x^4 - 105*x^2 + 1;
g(5, x) = 10395*x^5 - 1260*x^3 + 21*x;
g(6, x) = 135135*x^6 - 17325*x^4 + 378*x^2 - 1;
g(7, x) = 2027025*x^7 - 270270*x^5 + 6930*x^3 - 36*x.
Triangle of coefficients begins as:
1;
3, 0;
15, 0, -1;
105, 0, -10, 0;
945, 0, -105, 0, 1;
10395, 0, -1260, 0, 21, 0;
135135, 0, -17325, 0, 378, 0, -1;
2027025, 0, -270270, 0, 6930, 0, -36, 0.
-
C := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k+1)*Factorial(n-k)) ) >;
[T(n,k): k in [0..n], n in [0..10]];
-
T:= (n, k) -> I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!);
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
g[n_, k_]:= Coefficient[((-I)^n/2)*(y[n+1, I*x] + (-1)^n*y[n+1, -I*x]), x, k];
Table[g[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
(* Second program *)
Table[I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
[[ i^k*factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*factorial(k+1)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
A334823
Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).
Original entry on oeis.org
1, 1, 0, 3, 0, -1, 15, 0, -6, 0, 105, 0, -45, 0, 1, 945, 0, -420, 0, 15, 0, 10395, 0, -4725, 0, 210, 0, -1, 135135, 0, -62370, 0, 3150, 0, -28, 0, 2027025, 0, -945945, 0, 51975, 0, -630, 0, 1, 34459425, 0, -16216200, 0, 945945, 0, -13860, 0, 45, 0, 654729075, 0, -310134825, 0, 18918900, 0, -315315, 0, 1485, 0, -1
Offset: 0
Polynomials:
f(0, x) = 1;
f(1, x) = x;
f(2, x) = 3*x^2 - 1;
f(3, x) = 15*x^3 - 6*x;
f(4, x) = 105*x^4 - 45*x^2 + 1;
f(5, x) = 945*x^5 - 420*x^3 + 15*x;
f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
Triangle of coefficients begins as:
1;
1, 0;
3, 0, -1;
15, 0, -6, 0;
105, 0, -45, 0, 1;
945, 0, -420, 0, 15, 0;
10395, 0, -4725, 0, 210, 0, -1;
135135, 0, -62370, 0, 3150, 0, -28, 0;
2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
-
C := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
[T(n,k): k in [0..n], n in [0..10]];
-
T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
-
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
Table[f[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
(* Second program *)
Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
[[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
A330767
a(n) = 25*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 25.
Original entry on oeis.org
2, 25, 627, 15700, 393127, 9843875, 246490002, 6172093925, 154548838127, 3869893047100, 96901875015627, 2426416768437775, 60757321085960002, 1521359443917437825, 38094743419021905627, 953889944919465078500, 23885343366405648868127, 598087474105060686781675, 14976072195992922818410002
Offset: 0
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24), this sequence (m=25).
-
a:=[2,25];; for n in [3..25] do a[n]:=25*a[n-1]+a[n-2]; od; a;
-
I:=[2,25]; [n le 2 select I[n] else 25*Self(n-1) +Self(n-2): n in [1..25]];
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 25*I/2)), n = 0..25);
-
LucasL[Range[25] -1, 25]
-
vector(26, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 25*I/2) )
-
[2*(-I)^n*chebyshev_T(n, 25*I/2) for n in (0..25)]
A328141
a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 2, 0, -4, -4, 12, 32, -40, -264, 56, 2432, 1872, -24880, -47344, 276096, 938912, -3202528, -18225120, 36217856, 364270016, -323869248, -7609269568, -808015360, 166595915136, 185180268416, -3813121694848, -8442628405248, 90698535660800, 318649502602496, -2220909495899904
Offset: 0
-
a:=[1,2];; for n in [3..35] do a[n]:=a[n-1]-(n-3)*a[n-2]; od; a;
-
I:=[1,2]; [n le 2 select I[n] else Self(n-1) - (n-3)*Self(n-2): n in [1..35]];
-
a:= proc (n) option remember;
if n < 2 then n+1
else a(n-1) - (n-2)*a(n-2)
fi;
end proc; seq(a(n), n = 0..35);
-
a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,35}]
-
my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = v[n-1] - (n-3)*v[n-2] ); v
-
def a(n):
if n<2: return n+1
else: return a(n-1) - (n-2)*a(n-2)
[a(n) for n in (0..35)]
A306547
Triangle read by rows, defined by Riordan's general Eulerian recursion: T(n, k) = (k+3)*T(n-1, k) + (n-k-2) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).
Original entry on oeis.org
1, 1, -2, 1, -11, 4, 1, -55, 35, -8, 1, -274, 210, -91, 16, 1, -1368, 986, -637, 219, -32, 1, -6837, 3180, -3473, 1752, -507, 64, 1, -34181, -1431, -17951, 10543, -4563, 1147, -128, 1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256, 1, -854494, -1726360, -1490890, -2314, -177832, 84176, -28105, 5627, -512
Offset: 1
Triangle begins with:
1.
1, -2.
1, -11, 4.
1, -55, 35, -8.
1, -274, 210, -91, 16.
1, -1368, 986, -637, 219, -32.
1, -6837, 3180, -3473, 1752, -507, 64.
1, -34181, -1431, -17951, 10543, -4563, 1147, -128.
1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215.
-
e[n_, 0, m_]:= 1; (* Example for m=3 *)
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 1]:= 1; T[n_, n_]:= (-2)^(n-1); T[n_, k_]:= T[n, k] = (k+3)*T[n-1, k] + (n-k-2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten
-
{T(n, k) = if(k==1, 1, if(k==n, (-2)^(n-1), (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)))};
for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")))
-
def T(n, k):
if (k==1): return 1
elif (k==n): return (-2)^(n-1)
else: return (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..12)]
A306183
The coefficients of x in the reduction of x^2 -> x + 1 for the polynomial p(n,x) = Product_{k=1..n} (x+k).
Original entry on oeis.org
0, 1, 4, 19, 108, 719, 5496, 47465, 457160, 4858865, 56490060, 713165035, 9715762980, 142069257055, 2219386098160, 36889108220305, 650018185589520, 12103669982341025, 237476572759473300, 4896758300881695875, 105866710959427454300, 2394660132226522508975, 56560492065670933962600
Offset: 0
-
[(-1)^(n+1)*(&+[StirlingFirst(n+2,k)*Fibonacci(k): k in [0..n+2]]): n in [0..30]];
-
Table[(-1)^(n+1)*Sum[StirlingS1[n+2,k]*Fibonacci[k],{k,0,n+2}],{n,0,30}]
-
{a(n) = (-1)^(n+1)*sum(k=0,n+2, stirling(n+2,k,1)*fibonacci(k))};
vector(30, n, n--; a(n))
-
[sum((-1)^(k+1)*stirling_number1(n+2,k)*fibonacci(k) for k in (0..n+2)) for n in (0..30)]
Comments