cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: G. C. Greubel

G. C. Greubel's wiki page.

G. C. Greubel has authored 84 sequences. Here are the ten most recent ones:

A364705 Expansion of 1/(1 - 4*x - x^2 + x^3).

Original entry on oeis.org

1, 4, 17, 71, 297, 1242, 5194, 21721, 90836, 379871, 1588599, 6643431, 27782452, 116184640, 485877581, 2031912512, 8497342989, 35535406887, 148607058025, 621466295998, 2598936835130, 10868606578493, 45451896853104, 190077257155779, 794892318897727, 3324194635893583
Offset: 0

Author

G. C. Greubel, Aug 04 2023

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,17]; [n le 3 select I[n] else 4*Self(n-1) +Self(n-2) -Self(n-3): n in [1..41]];
    
  • Mathematica
    LinearRecurrence[{4,1,-1}, {1,4,17}, 41]
  • SageMath
    @CachedFunction
    def a(n): # a = A364705
        if (n<3): return (1,4,17)[n]
        else: return 4*a(n-1) +a(n-2) -a(n-3)
    [a(n) for n in range(41)]

Formula

G.f.: 1/(1 - 4*x - x^2 + x^3).
a(n) = 4*a(n-1) + a(n-2) - a(n-3).
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n-k, j)*binomial(n-k, k-j)*4^(n-2*k)*((1-sqrt(17))/2)^(k-j)*((1+sqrt(17))/2)^j.

A358027 Expansion of g.f.: (1 + x - 2*x^2 + 2*x^4)/((1-x)*(1-3*x^2)).

Original entry on oeis.org

1, 2, 3, 6, 11, 20, 35, 62, 107, 188, 323, 566, 971, 1700, 2915, 5102, 8747, 15308, 26243, 45926, 78731, 137780, 236195, 413342, 708587, 1240028, 2125763, 3720086, 6377291, 11160260, 19131875, 33480782, 57395627
Offset: 0

Author

G. C. Greubel, Oct 31 2022

Keywords

Crossrefs

Programs

  • Magma
    I:=[3,6,11]; [1,2] cat [n le 3 select I[n] else Self(n-1) +3*Self(n-2) -3*Self(n-3): n in [1..60]];
    
  • Mathematica
    LinearRecurrence[{1,3,-3}, {1,2,3,6,11}, 61]
  • SageMath
    def A254006(n): return 3^(n/2)*(1 + (-1)^n)/2
    def A358027(n): return (1/3)*( 4*A254006(n) + 7*A254006(n-1) +2*int(n==0) + 2*int(n==1) - 3 )
    [A358027(n) for n in (0..60)]

Formula

a(n) = (1/3)*(2*[n=0] + 2*[n=1] - 3 + 4*A254006(n) + 7*A254006(n-1)).
a(n) = a(n-1) - 3*a(n-2) + 3*a(n-3), for n >= 5.
E.g.f.: (1/3)*( 2 + 2*x - 3*exp(x) + 4*cosh(sqrt(3)*x) + (7/sqrt(3))*sinh(sqrt(3)*x) ).
G.f.: (1 +x -2*x^2 +2*x^4)/((1-x)*(1-3*x^2)). - Clark Kimberling, Oct 31 2022

A356916 Irregular triangle A(n, q) = total number of labeled P_4 - free chordal graphs on n vertices and q edges, read by rows; also companion triangle to A058865.

Original entry on oeis.org

1, 3, 3, 1, 6, 15, 8, 12, 6, 1, 10, 45, 60, 75, 60, 80, 30, 30, 10, 1, 15, 105, 275, 420, 516, 625, 465, 540, 495, 276, 255, 80, 60, 15, 1, 21, 210, 910, 2100, 3192, 4767, 5355, 4830, 5845, 5061, 5397, 4725, 2730, 2625, 1932, 882, 630, 175, 105, 21, 1
Offset: 1

Author

G. C. Greubel, Sep 03 2022

Keywords

Examples

			The irregular triangle begins as:
   1;
   3,   3,   1;
   6,  15,   8,  12,   6,   1;
  10,  45,  60,  75,  60,  80,  30,  30,  10,   1;
  15, 105, 275, 420, 516, 625, 465, 540, 495, 276, 255, 80, 60, 15, 1;
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:= t[n, k]= If[k==Binomial[n, 2], 1, Sum[Binomial[n, j]*(A[n-j, k-j*(2*n -1-j)/2] - t[n-j, k-j*(2*n-1-j)/2]), {j, n-2}]]; (* t = A058865 *)
    A[n_, k_]:= A[n, k]= t[n, k] + Sum[Sum[Binomial[n-1, j-1]*t[j, m]*A[n-j, k-m], {j, n-1}], {m, 0, k}]; (* A = A356916 *)
    Table[A[n, k], {n,2,12}, {k,Binomial[n, 2]}]//Flatten
  • PARI
    A356916(n, q)={A058865(n, q) + sum(k=1, n-1, k*binomial(n, k)*sum(j=k-1, k*(k-1)/2, A058865(k, j)*A356916(n-k, q-j)))/n} \\ Edited: Code for A058865 should exist and be updated only there. - M. F. Hasler, Sep 26 2022
    vector(7, n, vector(binomial(n+1,2), k, A356916(n+1, k)))
    
  • SageMath
    @CachedFunction
    def t(n,k): # t = A058865
        if (k==binomial(n,2)): return 1
        else: return sum( binomial(n,j)*( A(n-j, k-j*(2*n-1-j)/2) - t(n-j, k-j*(2*n-1-j)/2) ) for j in (1..n-2) )
    @CachedFunction
    def A(n,k): # A = A356916
        return t(n,k) + sum(sum( binomial(n-1,j-1)*t(j,m)*A(n-j,k-m) for j in (1..n-1) ) for m in (0..k) )
    flatten([[A(n,k) for k in (1..binomial(n,2))] for n in (2..12)])

Formula

Let a(n, q) be the number of labeled connected P_4 - free chordal graphs on n vertices and q edges (see A058865), then:
a(n, q) = Sum_{k=1..n-2} binomial(n, k)*(A(n-k, q - k(2*n-1-k)/2) - a(n-k, q - k(2*n-1-k)/2)) for 1 <= q <= binomial(n,2), n >= 2, with a(n, binomial(n,2)) = 1.
A(n, q) = a(n, q) + Sum_{k = 1..n-1} binomial(n-1, k-1)*Sum_{j = k-1..min(k(k-1)/2, q)} a(k, j)*A(n-k, q-j).
A(n, binomial(n,2)) = 1, n >= 2.
A(n, 1) = A(n, binomial(n,2) - 1) = A000217(n-1), n >= 2.
A(n, 2) = 3*A000332(n+1), n >= 3.

A352972 a(n) = Sum_{j=0..2*n} Sum_{k=0..j} A026536(j, k).

Original entry on oeis.org

1, 6, 35, 204, 1199, 7089, 42070, 250269, 1491262, 8896310, 53118352, 317373194, 1897253203, 11346582851, 67882263130, 406231442387, 2431626954934, 14558306758418, 87177151134954, 522110098886882, 3127380060424476, 18734897945679836, 112245303177542790, 672552484035697364, 4030148584900522009
Offset: 0

Author

G. C. Greubel, Apr 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    A352972[n_]:= A352972[n]= Sum[T[j,k], {j,0,2*n}, {k,0,j}];
    Table[A352972[n], {n,0,40}]
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A352972(n): return sum(sum(T(j,k) for k in (0..j)) for j in (0..2*n))
    [A352972(n) for n in (3..40)]

Formula

a(n) = Sum_{j=0..2*n} Sum_{k=0..j} A026536(j, k).

A334824 Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).

Original entry on oeis.org

1, 3, 0, 15, 0, -1, 105, 0, -10, 0, 945, 0, -105, 0, 1, 10395, 0, -1260, 0, 21, 0, 135135, 0, -17325, 0, 378, 0, -1, 2027025, 0, -270270, 0, 6930, 0, -36, 0, 34459425, 0, -4729725, 0, 135135, 0, -990, 0, 1, 654729075, 0, -91891800, 0, 2837835, 0, -25740, 0, 55, 0, 13749310575, 0, -1964187225, 0, 64324260, 0, -675675, 0, 2145, 0, -1
Offset: 0

Author

G. C. Greubel, May 13 2020, following a suggestion from Michel Marcus

Keywords

Comments

Lambert's denominator polynomials related to convergents of tan(x), f(n, x), are given in A334823.

Examples

			Polynomials:
g(0, x) = 1;
g(1, x) = 3*x;
g(2, x) = 15*x^2 - 1;
g(3, x) = 105*x^3 - 10*x;
g(4, x) = 945*x^4 - 105*x^2 + 1;
g(5, x) = 10395*x^5 - 1260*x^3 + 21*x;
g(6, x) = 135135*x^6 - 17325*x^4 + 378*x^2 - 1;
g(7, x) = 2027025*x^7 - 270270*x^5 + 6930*x^3 - 36*x.
Triangle of coefficients begins as:
        1;
        3, 0;
       15, 0,      -1;
      105, 0,     -10, 0;
      945, 0,    -105, 0,    1;
    10395, 0,   -1260, 0,   21, 0;
   135135, 0,  -17325, 0,  378, 0,  -1;
  2027025, 0, -270270, 0, 6930, 0, -36, 0.
		

Crossrefs

Columns k: A001147 (k=0), A000457 (k=2), A001881 (k=4), A130563 (k=6).

Programs

  • Magma
    C := ComplexField();
    T:= func< n, k| Round( i^k*Factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k+1)*Factorial(n-k)) ) >;
    [T(n,k): k in [0..n], n in [0..10]];
    
  • Maple
    T:= (n, k) -> I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!);
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    (* First program *)
    y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
    g[n_, k_]:= Coefficient[((-I)^n/2)*(y[n+1, I*x] + (-1)^n*y[n+1, -I*x]), x, k];
    Table[g[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
    (* Second program *)
    Table[I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
  • Sage
    [[ i^k*factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*factorial(k+1)*factorial(n-k)) for k in (0..n)] for n in (0..10)]

Formula

Equals the coefficients of the polynomials, g(n, x), defined by: (Start)
g(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k+1)!/((2*k+1)!*(n-2*k)!))*(x/2)^(n-2*k).
g(n, x) = ((2*n+1)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 3/2, -n, -n-1/2; -1/x^2).
g(n, x) = ((-i)^n/2)*(y(n+1, i*x) + (-1)^n*y(n+1, -i*x)), where y(n, x) are the Bessel Polynomials.
g(n, x) = (2*n-1)*x*g(n-1, x) - g(n-2, x).
E.g.f. of g(n, x): sin((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
g(n, 1) = (-1)^n*g(n, -1) = A053984(n) = (-1)^n*A053983(-n-1) = (-1)^n*f(-n-1, 1).
g(n, 2) = (-1)^n*g(n, -2) = A053987(n+1). (End)
As a number triangle:
T(n, k) = i^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), where i = sqrt(-1).
T(n, 0) = A001147(n+1).

A334823 Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).

Original entry on oeis.org

1, 1, 0, 3, 0, -1, 15, 0, -6, 0, 105, 0, -45, 0, 1, 945, 0, -420, 0, 15, 0, 10395, 0, -4725, 0, 210, 0, -1, 135135, 0, -62370, 0, 3150, 0, -28, 0, 2027025, 0, -945945, 0, 51975, 0, -630, 0, 1, 34459425, 0, -16216200, 0, 945945, 0, -13860, 0, 45, 0, 654729075, 0, -310134825, 0, 18918900, 0, -315315, 0, 1485, 0, -1
Offset: 0

Author

G. C. Greubel, May 12 2020, following a suggestion from Michel Marcus

Keywords

Comments

Lambert's numerator polynomials related to convergents of tan(x), g(n, x), are given in A334824.

Examples

			Polynomials:
f(0, x) = 1;
f(1, x) = x;
f(2, x) = 3*x^2 - 1;
f(3, x) = 15*x^3 - 6*x;
f(4, x) = 105*x^4 - 45*x^2 + 1;
f(5, x) = 945*x^5 - 420*x^3 + 15*x;
f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
Triangle of coefficients begins as:
        1;
        1, 0;
        3, 0,      -1;
       15, 0,      -6, 0;
      105, 0,     -45, 0,     1;
      945, 0,    -420, 0,    15, 0;
    10395, 0,   -4725, 0,   210, 0,   -1;
   135135, 0,  -62370, 0,  3150, 0,  -28, 0;
  2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
		

Crossrefs

Columns k: A001147 (k=0), A001879 (k=2), A001880 (k=4), A038121 (k=6).

Programs

  • Magma
    C := ComplexField();
    T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
    [T(n,k): k in [0..n], n in [0..10]];
    
  • Maple
    T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
    seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
  • Mathematica
    (* First program *)
    y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
    f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
    Table[f[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
    (* Second program *)
    Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
  • Sage
    [[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]

Formula

Equals the coefficients of the polynomials, f(n, x), defined by: (Start)
f(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k)!/((2*k)!*(n-2*k)!))*(x/2)^(n-2*k).
f(n, x) = ((2*n)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 1/2, -n, -n+1/2; -1/x^2).
f(n, x) = ((-i)^n/2)*(y(n, i*x) + (-1)^n*y(n, -i*x)), where y(n, x) are the Bessel Polynomials.
f(n, x) = (2*n-1)*x*f(n-1, x) - f(n-2, x).
E.g.f. of f(n, x): cos((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
f(n, 1) = (-1)^n*f(n, -1) = A053983(n) = (-1)^(n+1)*A053984(-n-1) = (-1)^(n+1) * g(-n-1, 1).
f(n, 2) = (-1)^n*f(n, -2) = A053988(n+1). (End)
As a number triangle:
T(n, k) = i^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), where i = sqrt(-1).
T(n, 0) = A001147(n).

A330767 a(n) = 25*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 25.

Original entry on oeis.org

2, 25, 627, 15700, 393127, 9843875, 246490002, 6172093925, 154548838127, 3869893047100, 96901875015627, 2426416768437775, 60757321085960002, 1521359443917437825, 38094743419021905627, 953889944919465078500, 23885343366405648868127, 598087474105060686781675, 14976072195992922818410002
Offset: 0

Author

G. C. Greubel, Dec 29 2019

Keywords

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), this sequence (m=25).

Programs

  • GAP
    a:=[2,25];; for n in [3..25] do a[n]:=25*a[n-1]+a[n-2]; od; a;
  • Magma
    I:=[2,25]; [n le 2 select I[n] else 25*Self(n-1) +Self(n-2): n in [1..25]];
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 25*I/2)), n = 0..25);
  • Mathematica
    LucasL[Range[25] -1, 25]
  • PARI
    vector(26, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 25*I/2) )
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 25*I/2) for n in (0..25)]
    

Formula

a(n) = ( (25 + sqrt(629))^n + (25 - sqrt(629))^n )/2^n.
G.f.: (2 - 25*x)/(1-25*x-x^2).
a(n) = Lucas(n, 25) = 2*(-i)^n * ChebyshevT(n, 25*i/2).

A328141 a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 2, 0, -4, -4, 12, 32, -40, -264, 56, 2432, 1872, -24880, -47344, 276096, 938912, -3202528, -18225120, 36217856, 364270016, -323869248, -7609269568, -808015360, 166595915136, 185180268416, -3813121694848, -8442628405248, 90698535660800, 318649502602496, -2220909495899904
Offset: 0

Author

G. C. Greubel, Oct 04 2019

Keywords

Comments

Former title and formula of A122033, but not the data.

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..35] do a[n]:=a[n-1]-(n-3)*a[n-2]; od; a;
  • Magma
    I:=[1,2]; [n le 2 select I[n] else Self(n-1) - (n-3)*Self(n-2): n in [1..35]];
    
  • Maple
    a:= proc (n) option remember;
    if n < 2 then n+1
    else a(n-1) - (n-2)*a(n-2)
    fi;
    end proc; seq(a(n), n = 0..35);
  • Mathematica
    a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,35}]
  • PARI
    my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = v[n-1] - (n-3)*v[n-2] ); v
    
  • Sage
    def a(n):
        if n<2: return n+1
        else: return a(n-1) - (n-2)*a(n-2)
    [a(n) for n in (0..35)]
    

Formula

a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.
E.g.f.: 1 + sqrt(2*e*Pi)*( erf(1/sqrt(2)) + erf((x-1)/sqrt(2)) ), where erf(x) is the error function.
a(n) = 2*(-1)^(n-1)*A001464(n-1).
a(n) = 2*(1/sqrt(2))^(n-1) * Hermite(n-1, 1/sqrt(2)), n > 0.

A306547 Triangle read by rows, defined by Riordan's general Eulerian recursion: T(n, k) = (k+3)*T(n-1, k) + (n-k-2) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).

Original entry on oeis.org

1, 1, -2, 1, -11, 4, 1, -55, 35, -8, 1, -274, 210, -91, 16, 1, -1368, 986, -637, 219, -32, 1, -6837, 3180, -3473, 1752, -507, 64, 1, -34181, -1431, -17951, 10543, -4563, 1147, -128, 1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256, 1, -854494, -1726360, -1490890, -2314, -177832, 84176, -28105, 5627, -512
Offset: 1

Author

G. C. Greubel, Feb 22 2019

Keywords

Comments

Row sums are {1, -1, -6, -27, -138, -831, -5820, -46563, -419070, -4190703, ...}.
The Mathematica code for e(n,k,m) gives eleven sequences of which the first few are in the OEIS (see Crossrefs section).

Examples

			Triangle begins with:
1.
1,      -2.
1,     -11,       4.
1,     -55,      35,      -8.
1,    -274,     210,     -91,    16.
1,   -1368,     986,    -637,   219,    -32.
1,   -6837,    3180,   -3473,  1752,   -507,    64.
1,  -34181,   -1431,  -17951, 10543,  -4563,  1147,  -128.
1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256.
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215.

Crossrefs

Cf. A157011 (m=0), A008292 (m=1), A157012 (m=2), A157013 (m=3), this sequence.

Programs

  • Mathematica
    e[n_, 0, m_]:= 1; (* Example for m=3 *)
    e[n_, k_, m_]:= 0 /; k >= n;
    e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
    Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
    T[n_, 1]:= 1; T[n_, n_]:= (-2)^(n-1); T[n_, k_]:= T[n, k] = (k+3)*T[n-1, k] + (n-k-2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten
  • PARI
    {T(n, k) = if(k==1, 1, if(k==n, (-2)^(n-1), (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)))};
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")))
    
  • Sage
    def T(n, k):
        if (k==1): return 1
        elif (k==n): return (-2)^(n-1)
        else: return (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)
    [[T(n, k) for k in (1..n)] for n in (1..12)]

Formula

T(n, k) = (k+3)*T(n-1, k) + (n-k-2)*T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).
e(n,k,m)= (k+m)*e(n-1, k, m) + (n-k+1-m)*e(n-1, k-1, m) with m=3.

A306183 The coefficients of x in the reduction of x^2 -> x + 1 for the polynomial p(n,x) = Product_{k=1..n} (x+k).

Original entry on oeis.org

0, 1, 4, 19, 108, 719, 5496, 47465, 457160, 4858865, 56490060, 713165035, 9715762980, 142069257055, 2219386098160, 36889108220305, 650018185589520, 12103669982341025, 237476572759473300, 4896758300881695875, 105866710959427454300, 2394660132226522508975, 56560492065670933962600
Offset: 0

Author

G. C. Greubel, Feb 07 2019

Keywords

Comments

See A192936 for the constant term of the reduction x^2 -> x + 1 for the polynomial p(n,x) = Product_{k=1..n} (x+k).

Crossrefs

Cf. A192936, A323620 (signed)

Programs

  • Magma
    [(-1)^(n+1)*(&+[StirlingFirst(n+2,k)*Fibonacci(k): k in [0..n+2]]): n in [0..30]];
    
  • Mathematica
    Table[(-1)^(n+1)*Sum[StirlingS1[n+2,k]*Fibonacci[k],{k,0,n+2}],{n,0,30}]
  • PARI
    {a(n) = (-1)^(n+1)*sum(k=0,n+2, stirling(n+2,k,1)*fibonacci(k))};
    vector(30, n, n--; a(n))
    
  • Sage
    [sum((-1)^(k+1)*stirling_number1(n+2,k)*fibonacci(k) for k in (0..n+2)) for n in (0..30)]

Formula

a(n) = (-1)^(n+1)*Sum_{k=0..n+2} Stirling1(n+2,k)*A000045(k).
From Vaclav Kotesovec, Feb 09 2019: (Start)
a(n) = 2*n*a(n-1) - (n^2 - n - 1)*a(n-2).
a(n) = cos(Pi*sqrt(5)/2) * (Gamma(sqrt(5)*phi) * Gamma(n + 1/phi^2) / phi^2 - phi^2 * Gamma(sqrt(5)/phi) * Gamma(n + phi^2)) / (Pi*sqrt(5)).
a(n) ~ c * n! * n^phi, where c = -cos(sqrt(5)*Pi/2) * (5 + 3*sqrt(5)) * Gamma((5 - sqrt(5))/2) / (10*Pi) = 0.30858712435869... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. (End)