cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A058865 Irregular table a(n,k) = number of connected labeled chordal graphs on n nodes with k edges, containing no induced path P_4, for n >= 1, 1 <= k <= n*(n-1)/2, read by rows; also the number of labeled trees with each vertex replaced by a clique.

Original entry on oeis.org

1, 0, 3, 1, 0, 0, 4, 12, 6, 1, 0, 0, 0, 5, 30, 75, 30, 30, 10, 1, 0, 0, 0, 0, 6, 60, 270, 360, 435, 270, 255, 80, 60, 15, 1, 0, 0, 0, 0, 0, 7, 105, 735, 1925, 2940, 3591, 4165, 2310, 2520, 1925, 882, 630, 175, 105, 21, 1, 0, 0, 0, 0, 0, 0, 8, 168, 1680, 7280, 16800
Offset: 1

Views

Author

Robert Castelo, Jan 06 2001

Keywords

Comments

A subclass of chordal-comparability graphs.

Examples

			The table starts:
   n | a(n, 1 <= k <= n(n-1)/2)
  ---+---------------------------
   1 | ()    (row length = 0: empty row)
   2 | 1
   3 | 0, 3, 1
   4 | 0, 0, 4, 12, 6, 1
   5 | 0, 0, 0, 5, 30, 75, 30, 30, 10, 1
  ...
		

Crossrefs

Cf. A000217 (row lengths, up to offset), A000292, A007134, A058863, A058864.
Cf. A356916.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==Binomial[n, 2], 1, Sum[Binomial[n, j]*(A[n-j, k-j*(2*n -1-j)/2] - T[n-j, k-j*(2*n-1-j)/2]), {j, n-2}]]; (* T = A058865 *)
    A[n_, k_]:= A[n, k]= T[n, k] + Sum[Sum[Binomial[n-1, j-1]*T[j, m]*A[n-j, k-m], {j, n-1}], {m, 0, k}]; (* A = A356916 *)
    Table[T[n, k], {n,2,12}, {k,Binomial[n, 2]}]//Flatten (* G. C. Greubel, Sep 03 2022 *)
  • PARI
    A58865=Map(); A058865(n,q) = if( q < n-1 || q >= n*(n-1)\2, q==n*(n-1)\2, mapisdefined(A58865, [n,q], &q), q, mapput(A58865, [n,q], q = sum(k=1,n-2, binomial(n,k)*(A356916(n-k, q - k*(k-1)/2 - k*(n-k)) - A058865(n-k, q - k*(k-1)\2 - (n-k)*k)))); q) \\ A356916 "outsourced" by M. F. Hasler, Sep 26 2022
    [[A058865(n,k)| k<-[1..n*(n-1)/2]] | n<-[1..7]] \\ M. F. Hasler, Sep 03 2022
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A058865
        if (k==binomial(n,2)): return 1
        else: return sum( binomial(n,j)*( A(n-j, k-j*(2*n-1-j)/2) - T(n-j, k-j*(2*n-1-j)/2) ) for j in (1..n-2) )
    @CachedFunction
    def A(n,k): # A = A356916
        return T(n,k) + sum(sum( binomial(n-1,j-1)*T(j,m)*A(n-j,k-m) for j in (1..n-1) ) for m in (0..k) )
    flatten([[T(n,k) for k in (1..binomial(n,2))] for n in (2..12)]) # G. C. Greubel, Sep 03 2022

Formula

Let A(n,k) be the total number of labeled P_4 - free chordal graphs on n vertices and q edges (= A356916), then:
a(n,q) = Sum_{k=1..n-2} binomial(n,k)*(A(n-k, q - k(k-1)/2 - k(n-k)) - a(n-k, q - k(k-1)/2 - k(n-k))) for q < n(n-1)/2 =: T(n), a(n, T(n)) = 1. [Corrected by M. F. Hasler, Sep 03 2022]
A(n,q) = a(n,q) + Sum_{k = 1..n-1} binomial(n-1, k-1)*Sum_{l = k-1..min(k(k-1)/2, q)} a(k,l)*A(n-k,q-l). [Simplified by M. F. Hasler, Sep 03 2022]
Particular values: a(n,k) = 0 for q < n-1; a(n, T(n)) = 1; a(n,n-1) = n; a(n, T(n)-1) = n(n-1)/2 for n > 2, a(n, n) = a(n, T(n)-2) = n(n-1)(n-2)/2 for n > 3. - M. F. Hasler, Sep 03 2022
From G. C. Greubel, Sep 03 2022: (Start)
a(n, binomial(n,2) - 1) = A000217(n+1) - [n=2], n >= 2.
a(n, n) = 3*A000292(n) - 2*[n=3], n >= 3.
Sum_{k=1..binomial(n,2)} a(n, k) = A058863(n). (End)

Extensions

Typo in a(6,11) corrected by G. C. Greubel, Sep 03 2022
Showing 1-1 of 1 results.