cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert Castelo

Robert Castelo's wiki page.

Robert Castelo has authored 4 sequences.

A058862 Number of chordal labeled graphs (connected or not) with n nodes.

Original entry on oeis.org

1, 2, 8, 61, 822, 18154, 617675, 30888596, 2192816760, 215488096587, 28791414081916, 5165908492061926, 1234777416771739141, 391374602835914994534, 164188178238479142509452
Offset: 1

Author

Robert Castelo, Jan 06 2001

Keywords

References

  • N. C. Wormald, Counting labeled chordal graphs. Graphs Combin. 1 (1985), no. 2, 193-200.

Crossrefs

Cf. A007134.

Programs

  • Mathematica
    A007134 = Cases[Import["https://oeis.org/A007134/b007134.txt", "Table"],
       {, }][[All, 2]];
    c[n_ /; 1 <= n <= Length[A007134]] := A007134[[n]];
    a[n_] := a[n] = If[n == 0, 0, c[n] + 1/n * Sum[k*Binomial[n, k]*c[k]*
       a[n - k], {k, 1, n + 1}]];
    Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Jul 20 2022 *)

Formula

From the relation G(x)=exp(g(x)) between generating functions for connected g(x) and all G(x) labeled structures and considering generating functions for chordal graphs (c_n, A007134), we have a(n) = c(n) + 1/n * Sum_{k=1}^(n - 1) k * binomial(n, k) * c(k) * a(n - k). [Formula edited by Michael De Vlieger, Jul 04 2018]

Extensions

a(13) from formula by Falk Hüffner, Jul 24 2019
a(14)-a(15) from Brendan McKay, Jun 05 2021

A058863 Number of connected labeled chordal graphs on n nodes with no induced path P_4; also the number of labeled trees with each vertex replaced by a clique.

Original entry on oeis.org

1, 1, 4, 23, 181, 1812, 22037, 315569, 5201602, 97009833, 2019669961, 46432870222, 1168383075471, 31939474693297, 942565598033196, 29866348653695203, 1011335905644178273, 36446897413531401020, 1392821757824071815641, 56259101478392975833333
Offset: 1

Author

Robert Castelo, Jan 06 2001

Keywords

Comments

A subclass of chordal-comparability graphs.

Crossrefs

Programs

  • Maple
    S:= series(-LambertW(exp(-x)-1), x, 101):
    seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 30 2015
  • Mathematica
    a[n_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k^(k-1), {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Dec 17 2017, after Vladeta Jovovic *)
  • PARI
    geta(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(1)); return(1 + sum(k=1, n-2, binomial(n,k)*(vA[n-k] - va[n-k])));}
    getA(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(2)); return ((va[n] + sum(k=1, n-1, k*va[k]*binomial(n,k)*vA[n-k])/n));}
    both(n) = {va = vector(n); vA = vector(n); for (i=1, n, va[i] = geta(i, va, vA); vA[i] = getA(i, va, vA);); print("va_A058863=", va); print("vA_A058864=", vA);}
    \\ Michel Marcus, Apr 03 2013

Formula

A058863 and A058864 satisfy:
1) c(n) = 1 + Sum_{k=1..n-2} binomial(n, k)*(t(n-k) - c(n-k))
2) t(n) = c(n) + Sum_{k=1..n-1} k*c(k)*binomial(n, k)*t(n-k)/n
where c(n) (A058863) is the number of connected graphs of this type and t(n) (A058864) is the total number of such graphs.
a(n) is asymptotic to sqrt(r*(e-1))/n*(n/(e*r))^n where r = 1 - log(e-1).
E.g.f.: -LambertW(exp(-x)-1). - Vladeta Jovovic, Nov 22 2002
a(n) = Sum_{k=0..n} Stirling2(n, k)*A060356(k). Also a(n) = Sum_{k=1..n} (-1)^(n-k)*Stirling2(n, k)*k^(k-1). - Vladeta Jovovic, Sep 17 2003

Extensions

Formulae edited and completed by Michel Marcus, Apr 07 2013

A058864 Number of labeled chordal graphs (connected or not) on n nodes with no induced path P_4.

Original entry on oeis.org

1, 2, 8, 49, 402, 4144, 51515, 750348, 12537204, 236424087, 4967735896, 115102258660, 2915655255385, 80164472149454, 2377679022913612, 75674858155603353, 2572626389524849478, 93040490884813025684, 3566833833735159397963, 144485408698878208399296
Offset: 1

Author

Robert Castelo, Jan 06 2001

Keywords

Comments

A subclass of chordal-comparability graphs.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 417.

Crossrefs

Cf. variants: A196555, A196556, A196557.

Programs

  • Mathematica
    Rest[With[{nmax = 50}, CoefficientList[Series[Exp[-LambertW[Exp[-x] - 1]], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Nov 14 2017 *)
    a[n_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*(k+1)^(k-1), {k, 0, n}];
    Array[a, 18] (* Jean-François Alcover, Dec 17 2017, after Vladeta Jovovic *)
  • PARI
    {a(n)=polcoeff(sum(m=1, n, (m+1)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
    
  • PARI
    for(n=1,10, print1(sum(k=0, n, (-1)^(n-k)*stirling(n,k,2)*(k+1)^(k-1)), ", ")) \\ G. C. Greubel, Nov 14 2017

Formula

A058863 and A058864 satisfy:
1) c(n) = 1 + Sum_{k=1..n-2} binomial(n, k)*(t(n-k) - c(n-k))
2) t(n) = c(n) + Sum_{k=1..n-1} k*c(k)*binomial(n, k)*t(n-k)/n
where c(n) (A058863) is the number of connected graphs of this type and t(n) (A058864) is the total number of such graphs.
O.g.f.: Sum_{n>=1} (n+1)^(n-1) * x^n / Product_{k=1..n} (1+k*x). - Paul D. Hanna, Jul 20 2011
E.g.f.: exp(-LambertW(exp(-x)-1)). - Vladeta Jovovic, Nov 22 2002
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*(k+1)^(k-1). - Vladeta Jovovic, Nov 12 2003
a(n) ~ sqrt(exp(1)-1) * exp(1-n) * n^(n-1) * (1-log(exp(1)-1))^(1/2-n). - Vaclav Kotesovec, Oct 18 2013

Extensions

Formulae edited and completed by Michel Marcus, Apr 07 2013

A058865 Irregular table a(n,k) = number of connected labeled chordal graphs on n nodes with k edges, containing no induced path P_4, for n >= 1, 1 <= k <= n*(n-1)/2, read by rows; also the number of labeled trees with each vertex replaced by a clique.

Original entry on oeis.org

1, 0, 3, 1, 0, 0, 4, 12, 6, 1, 0, 0, 0, 5, 30, 75, 30, 30, 10, 1, 0, 0, 0, 0, 6, 60, 270, 360, 435, 270, 255, 80, 60, 15, 1, 0, 0, 0, 0, 0, 7, 105, 735, 1925, 2940, 3591, 4165, 2310, 2520, 1925, 882, 630, 175, 105, 21, 1, 0, 0, 0, 0, 0, 0, 8, 168, 1680, 7280, 16800
Offset: 1

Author

Robert Castelo, Jan 06 2001

Keywords

Comments

A subclass of chordal-comparability graphs.

Examples

			The table starts:
   n | a(n, 1 <= k <= n(n-1)/2)
  ---+---------------------------
   1 | ()    (row length = 0: empty row)
   2 | 1
   3 | 0, 3, 1
   4 | 0, 0, 4, 12, 6, 1
   5 | 0, 0, 0, 5, 30, 75, 30, 30, 10, 1
  ...
		

Crossrefs

Cf. A000217 (row lengths, up to offset), A000292, A007134, A058863, A058864.
Cf. A356916.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==Binomial[n, 2], 1, Sum[Binomial[n, j]*(A[n-j, k-j*(2*n -1-j)/2] - T[n-j, k-j*(2*n-1-j)/2]), {j, n-2}]]; (* T = A058865 *)
    A[n_, k_]:= A[n, k]= T[n, k] + Sum[Sum[Binomial[n-1, j-1]*T[j, m]*A[n-j, k-m], {j, n-1}], {m, 0, k}]; (* A = A356916 *)
    Table[T[n, k], {n,2,12}, {k,Binomial[n, 2]}]//Flatten (* G. C. Greubel, Sep 03 2022 *)
  • PARI
    A58865=Map(); A058865(n,q) = if( q < n-1 || q >= n*(n-1)\2, q==n*(n-1)\2, mapisdefined(A58865, [n,q], &q), q, mapput(A58865, [n,q], q = sum(k=1,n-2, binomial(n,k)*(A356916(n-k, q - k*(k-1)/2 - k*(n-k)) - A058865(n-k, q - k*(k-1)\2 - (n-k)*k)))); q) \\ A356916 "outsourced" by M. F. Hasler, Sep 26 2022
    [[A058865(n,k)| k<-[1..n*(n-1)/2]] | n<-[1..7]] \\ M. F. Hasler, Sep 03 2022
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A058865
        if (k==binomial(n,2)): return 1
        else: return sum( binomial(n,j)*( A(n-j, k-j*(2*n-1-j)/2) - T(n-j, k-j*(2*n-1-j)/2) ) for j in (1..n-2) )
    @CachedFunction
    def A(n,k): # A = A356916
        return T(n,k) + sum(sum( binomial(n-1,j-1)*T(j,m)*A(n-j,k-m) for j in (1..n-1) ) for m in (0..k) )
    flatten([[T(n,k) for k in (1..binomial(n,2))] for n in (2..12)]) # G. C. Greubel, Sep 03 2022

Formula

Let A(n,k) be the total number of labeled P_4 - free chordal graphs on n vertices and q edges (= A356916), then:
a(n,q) = Sum_{k=1..n-2} binomial(n,k)*(A(n-k, q - k(k-1)/2 - k(n-k)) - a(n-k, q - k(k-1)/2 - k(n-k))) for q < n(n-1)/2 =: T(n), a(n, T(n)) = 1. [Corrected by M. F. Hasler, Sep 03 2022]
A(n,q) = a(n,q) + Sum_{k = 1..n-1} binomial(n-1, k-1)*Sum_{l = k-1..min(k(k-1)/2, q)} a(k,l)*A(n-k,q-l). [Simplified by M. F. Hasler, Sep 03 2022]
Particular values: a(n,k) = 0 for q < n-1; a(n, T(n)) = 1; a(n,n-1) = n; a(n, T(n)-1) = n(n-1)/2 for n > 2, a(n, n) = a(n, T(n)-2) = n(n-1)(n-2)/2 for n > 3. - M. F. Hasler, Sep 03 2022
From G. C. Greubel, Sep 03 2022: (Start)
a(n, binomial(n,2) - 1) = A000217(n+1) - [n=2], n >= 2.
a(n, n) = 3*A000292(n) - 2*[n=3], n >= 3.
Sum_{k=1..binomial(n,2)} a(n, k) = A058863(n). (End)

Extensions

Typo in a(6,11) corrected by G. C. Greubel, Sep 03 2022