cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007134 Number of connected labeled chordal graphs (or triangulated graphs) with n nodes.

Original entry on oeis.org

1, 1, 4, 35, 541, 13302, 489287, 25864897, 1910753782, 193328835393, 26404671468121, 4818917841228328, 1167442027829857677, 374059462390709800421, 158311620026439080777076
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. C. Wormald, Counting labelled chordal graphs. Graphs Combin. 1 (1985), no. 2, 193-200.

Crossrefs

Cf. A058862.

Extensions

a(14)-a(15) from Brendan McKay, Jun 05 2021

A179534 Number of labeled split graphs on n vertices.

Original entry on oeis.org

1, 2, 8, 58, 632, 9654, 202484, 5843954, 233064944, 12916716526, 998745087980, 108135391731690, 16434082400952296, 3513344943520006118, 1058030578581541945316, 449389062270642095128546, 269419653009366144571801568, 228157953744571034350576205790
Offset: 1

Views

Author

Vladislav Bina, Jul 18 2010

Keywords

Comments

A split graph is a graph whose vertices can be partitioned into a clique and an independent set. - Justin M. Troyka, Oct 28 2018

References

  • V. Bina, Enumeration of Labeled Split Graphs and Counts of Important Superclasses. In Adacher L., Flamini, M., Leo, G., Nicosia, G., Pacifici, A., Picialli, V. (Eds.). CTW 2011, Villa Mondragone, Frascati, pp. 72-75 (2011).

Crossrefs

Programs

  • Maple
    A179534 := proc(n) local a,k; a := 1 ; for k from 2 to n do a := a+binomial(n,k)*( (2^k-1)^(n-k) -add(j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j)/(j+1), j=1..n-k) ) end do: a ; end proc: # R. J. Mathar, Jun 21 2011
  • Mathematica
    a[n_] := 1 + Sum[Binomial[n,k]*((2^k-1)^(n-k) - Sum[j*k*Binomial[n-k,j]*(2^(k-1)-1)^(n-k-j)/(j+1), {j,1,n-k}]), {k,2, n}]; Array[a, 20] (* Stefano Spezia, Oct 29 2018 *)
  • PARI
    b(n) = {sum(k=0, n, binomial(n, k)*2^(k*(n-k)))} \\ A047863(n)
    a(n) = b(n) - n*b(n-1) \\ Andrew Howroyd, Jun 06 2021

Formula

a(n) = 1 + Sum_{k=2..n} binomial(n,k)*( (2^k-1)^(n-k) - Sum_{j=1..n-k} j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j) /(j+1) ).
From Justin M. Troyka, Oct 28 2018: (Start)
a(n) = [ Sum_{k=0..n} binomial(n,k) 2^(k(n-k)) ] - [ n Sum_{k=0..n-1} binomial(n-1,k)*2^(k(n-k-1)) ] (see the Troyka link, Cor. 3.4).
a(n) = A047863(n) - n*A047863(n-1) (see the Troyka link, Cor. 3.4).
a(n) ~ A047863(n) (see Bender, Richmond, and Wormald, Cor. 1). (End)

Extensions

a(12)-a(16) corrected and terms a(17) and beyond from Andrew Howroyd, Jun 06 2021

A345024 a(n) is the number of maximal chains of labeled chordal graphs with n vertices.

Original entry on oeis.org

1, 1, 6, 576, 1416960, 120678543360, 455010170456862720, 95371866538619173904056320, 1383866987105877308750365304858542080, 1716187027583005555045945024371317843956845772800, 221917018834976627508152930913765491170568412125060985539788800, 3598055237740601485367382153175891099609454479883844294426214728495086488780800
Offset: 1

Views

Author

Brendan McKay, Jun 05 2021

Keywords

Comments

a(n) is the number of sequences G[0], G[1], ..., G[n(n-1)/2] where each G[i] is a chordal graph with i edges and G[i] is a subgraph of G[i+1] for each i. All graphs are labeled.

Crossrefs

Cf. A058862.

A208356 Number of labeled star-like graphs on n vertices.

Original entry on oeis.org

1, 2, 8, 61, 762, 13204, 300155, 8950176
Offset: 1

Views

Author

Vladislav Bina, Feb 25 2012

Keywords

Comments

Graph G is called star-like if and only if one of its clique trees forms a star.
The first seven terms published in the Bina Ph.D. thesis.

Crossrefs

Cf. A179534, A006125, A058862 (sub- and superclasses)
Showing 1-4 of 4 results.