cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vladislav Bina

Vladislav Bina's wiki page.

Vladislav Bina has authored 2 sequences.

A208356 Number of labeled star-like graphs on n vertices.

Original entry on oeis.org

1, 2, 8, 61, 762, 13204, 300155, 8950176
Offset: 1

Author

Vladislav Bina, Feb 25 2012

Keywords

Comments

Graph G is called star-like if and only if one of its clique trees forms a star.
The first seven terms published in the Bina Ph.D. thesis.

Crossrefs

Cf. A179534, A006125, A058862 (sub- and superclasses)

A179534 Number of labeled split graphs on n vertices.

Original entry on oeis.org

1, 2, 8, 58, 632, 9654, 202484, 5843954, 233064944, 12916716526, 998745087980, 108135391731690, 16434082400952296, 3513344943520006118, 1058030578581541945316, 449389062270642095128546, 269419653009366144571801568, 228157953744571034350576205790
Offset: 1

Author

Vladislav Bina, Jul 18 2010

Keywords

Comments

A split graph is a graph whose vertices can be partitioned into a clique and an independent set. - Justin M. Troyka, Oct 28 2018

References

  • V. Bina, Enumeration of Labeled Split Graphs and Counts of Important Superclasses. In Adacher L., Flamini, M., Leo, G., Nicosia, G., Pacifici, A., Picialli, V. (Eds.). CTW 2011, Villa Mondragone, Frascati, pp. 72-75 (2011).

Crossrefs

Programs

  • Maple
    A179534 := proc(n) local a,k; a := 1 ; for k from 2 to n do a := a+binomial(n,k)*( (2^k-1)^(n-k) -add(j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j)/(j+1), j=1..n-k) ) end do: a ; end proc: # R. J. Mathar, Jun 21 2011
  • Mathematica
    a[n_] := 1 + Sum[Binomial[n,k]*((2^k-1)^(n-k) - Sum[j*k*Binomial[n-k,j]*(2^(k-1)-1)^(n-k-j)/(j+1), {j,1,n-k}]), {k,2, n}]; Array[a, 20] (* Stefano Spezia, Oct 29 2018 *)
  • PARI
    b(n) = {sum(k=0, n, binomial(n, k)*2^(k*(n-k)))} \\ A047863(n)
    a(n) = b(n) - n*b(n-1) \\ Andrew Howroyd, Jun 06 2021

Formula

a(n) = 1 + Sum_{k=2..n} binomial(n,k)*( (2^k-1)^(n-k) - Sum_{j=1..n-k} j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j) /(j+1) ).
From Justin M. Troyka, Oct 28 2018: (Start)
a(n) = [ Sum_{k=0..n} binomial(n,k) 2^(k(n-k)) ] - [ n Sum_{k=0..n-1} binomial(n-1,k)*2^(k(n-k-1)) ] (see the Troyka link, Cor. 3.4).
a(n) = A047863(n) - n*A047863(n-1) (see the Troyka link, Cor. 3.4).
a(n) ~ A047863(n) (see Bender, Richmond, and Wormald, Cor. 1). (End)

Extensions

a(12)-a(16) corrected and terms a(17) and beyond from Andrew Howroyd, Jun 06 2021