Justin M. Troyka has authored 3 sequences.
A363656
Number of bounded affine permutations of size n.
Original entry on oeis.org
1, 3, 13, 87, 761, 8243, 106037, 1578671, 26685361, 504770859, 10562259533, 242216304839, 6040459572681, 162750100464643, 4711225866217381, 145818462291970911, 4805369568409107809, 167982555421167341147, 6208589923091273031293, 241898639921607255506039
Offset: 1
Let [a,b] denote the affine permutation p of size 2 determined by p(1) = a and p(2) = b.
The 3 bounded affine permutations of size 2 are [1,2], [2,1], and [0,3], so a(2) = 3.
A232700
Number of labeled connected point-determining bipartite graphs on n vertices.
Original entry on oeis.org
1, 1, 0, 12, 60, 1320, 26880, 898800, 40446000, 2568736800, 225962684640, 27627178692960, 4686229692144000, 1104514965434200320, 361988888631722352000, 165271302775469812521600, 105278651889065640047462400, 93750696652129931568573619200
Offset: 1
Consider n = 4. There are 12 connected point-determining bipartite graphs on 4 vertices: the graph *--*--*--*, with 12 possible labelings. - _Justin M. Troyka_, Nov 27 2013
- Andrew Howroyd, Table of n, a(n) for n = 1..100 (terms 1..20 from Justin M. Troyka)
- Ira Gessel and Ji Li, Enumeration of point-determining graphs, arXiv:0705.0042 [math.CO], 2007-2009.
- Andy Hardt, Pete McNeely, Tung Phan, and Justin M. Troyka, Combinatorial species and graph enumeration, arXiv:1312.0542 [math.CO], 2013.
Cf.
A006024,
A004110 (labeled and unlabeled point-determining graphs).
Cf.
A092430,
A004108 (labeled and unlabeled connected point-determining graphs).
Cf.
A232699,
A218090 (labeled and unlabeled point-determining bipartite graphs).
Cf.
A088974 (unlabeled connected point-determining bipartite graphs).
-
terms = 18;
G[x_] = Sqrt[Sum[((1 + x)^2^k*Log[1 + x]^k)/k!, {k, 0, terms+1}]] + O[x]^(terms+1);
A[x_] = x + Log[1 + (G[x] - x - 1)/(1 + x)];
(CoefficientList[A[x], x]*Range[0, terms]!) // Rest (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
-
seq(n)={my(A=log(1+x+O(x*x^n))); my(p=sqrt(sum(k=0, n, exp(2^k*A)*A^k/k!))); Vec(serlaplace(x + log(1+(p-x-1)/(1+x))))} \\ Andrew Howroyd, Sep 09 2018
A232699
Number of labeled point-determining bipartite graphs on n vertices.
Original entry on oeis.org
1, 1, 1, 3, 15, 135, 1875, 38745, 1168545, 50017905, 3029330745, 257116925835, 30546104308335, 5065906139629335, 1172940061645387035, 379092680506164049425, 171204492289446788997825, 108139946568584292606269025, 95671942593719946611454522225
Offset: 0
Consider n = 3. The triangle graph is point-determining, but it is not bipartite, so it is not counted in a(3). The graph 1--2--3 is bipartite, but it is not point-determining (the vertices on the two ends have the same neighborhood), so it is also not counted in a(3). The only graph counted in a(3) is the graph *--* * (with three possible labelings). - _Justin M. Troyka_, Nov 27 2013
- Andrew Howroyd, Table of n, a(n) for n = 0..100 (terms 0..20 from Justin M. Troyka)
- Ira Gessel and Ji Li, Enumeration of point-determining graphs, arXiv:0705.0042 [math.CO], 2007-2009.
- Andy Hardt, Pete McNeely, Tung Phan, and Justin M. Troyka, Combinatorial species and graph enumeration, arXiv:1312.0542 [math.CO], 2013.
Cf.
A006024,
A004110 (labeled and unlabeled point-determining graphs).
Cf.
A092430,
A004108 (labeled and unlabeled connected point-determining graphs).
Cf.
A218090 (unlabeled point-determining bipartite graphs).
Cf.
A232700,
A088974 (labeled and unlabeled connected point-determining bipartite graphs).
-
terms = 20;
CoefficientList[Sqrt[Sum[((1+x)^2^k Log[1+x]^k)/k!, {k, 0, terms}]] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
-
seq(n)={my(A=log(1+x+O(x*x^n))); Vec(serlaplace(sqrt(sum(k=0, n, exp(2^k*A)*A^k/k!))))} \\ Andrew Howroyd, Sep 09 2018
Comments