cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A058863 Number of connected labeled chordal graphs on n nodes with no induced path P_4; also the number of labeled trees with each vertex replaced by a clique.

Original entry on oeis.org

1, 1, 4, 23, 181, 1812, 22037, 315569, 5201602, 97009833, 2019669961, 46432870222, 1168383075471, 31939474693297, 942565598033196, 29866348653695203, 1011335905644178273, 36446897413531401020, 1392821757824071815641, 56259101478392975833333
Offset: 1

Views

Author

Robert Castelo, Jan 06 2001

Keywords

Comments

A subclass of chordal-comparability graphs.

Crossrefs

Programs

  • Maple
    S:= series(-LambertW(exp(-x)-1), x, 101):
    seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 30 2015
  • Mathematica
    a[n_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k^(k-1), {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Dec 17 2017, after Vladeta Jovovic *)
  • PARI
    geta(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(1)); return(1 + sum(k=1, n-2, binomial(n,k)*(vA[n-k] - va[n-k])));}
    getA(n, va, vA) = {local(k); if (n==1, return(1)); if (n==2, return(2)); return ((va[n] + sum(k=1, n-1, k*va[k]*binomial(n,k)*vA[n-k])/n));}
    both(n) = {va = vector(n); vA = vector(n); for (i=1, n, va[i] = geta(i, va, vA); vA[i] = getA(i, va, vA);); print("va_A058863=", va); print("vA_A058864=", vA);}
    \\ Michel Marcus, Apr 03 2013

Formula

A058863 and A058864 satisfy:
1) c(n) = 1 + Sum_{k=1..n-2} binomial(n, k)*(t(n-k) - c(n-k))
2) t(n) = c(n) + Sum_{k=1..n-1} k*c(k)*binomial(n, k)*t(n-k)/n
where c(n) (A058863) is the number of connected graphs of this type and t(n) (A058864) is the total number of such graphs.
a(n) is asymptotic to sqrt(r*(e-1))/n*(n/(e*r))^n where r = 1 - log(e-1).
E.g.f.: -LambertW(exp(-x)-1). - Vladeta Jovovic, Nov 22 2002
a(n) = Sum_{k=0..n} Stirling2(n, k)*A060356(k). Also a(n) = Sum_{k=1..n} (-1)^(n-k)*Stirling2(n, k)*k^(k-1). - Vladeta Jovovic, Sep 17 2003

Extensions

Formulae edited and completed by Michel Marcus, Apr 07 2013

A349585 E.g.f. satisfies: A(x) * log(A(x)) = 1 - exp(-x).

Original entry on oeis.org

1, 1, -2, 8, -59, 642, -9112, 158839, -3279880, 78250188, -2117569181, 64082989720, -2144319848772, 78609355884893, -3133061858717806, 134884905211588892, -6238095343894356675, 308427209934965151158, -16234730389499986865092, 906409067599064528054343
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
         (m-1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> (-1)^(n-1)*b(n, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 03 2022
  • Mathematica
    a[n_] := (-1)^(n - 1) * Sum[If[k == 1, 1, (k - 1)^(k - 1)]*StirlingS2[n, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, (k-1)^(k-1)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(1-exp(-x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (-k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} (k-1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = exp( LambertW(1 - exp(-x)) ).
G.f.: Sum_{k>=0} (-k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ -(-1)^n * sqrt(1 + exp(1)) * n^(n-1) / (exp(n+1) * (log(1 + exp(1)) - 1)^(n - 1/2)). - Vaclav Kotesovec, Dec 05 2021

A196555 O.g.f.: Sum_{n>=0} 2*(n+2)^(n-1) * x^n / Product_{k=1..n} (1+k*x).

Original entry on oeis.org

1, 2, 6, 28, 186, 1614, 17332, 222254, 3317326, 56532264, 1083571422, 23081180918, 541047188936, 13843339479298, 383952455939662, 11475711580482268, 367729128426998450, 12577206203908139494, 457341567152354085700, 17619050162270848917366
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2011

Keywords

Examples

			O.g.f.: A(x) = 1 + 2*x + 6*x^2 + 28*x^3 + 186*x^4 + 1614*x^5 +...
where the o.g.f. is given by:
A(x) = 1 + 2*3^0*x/(1+x) + 2*4^1*x^2/((1+x)*(1+2*x)) + 2*5^2*x^3/((1+x)*(1+2*x)*(1+3*x)) + 2*6^3*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 186*x^4/4! + 1614*x^5/5! +...
where the e.g.f. is given by:
A(x)^(1/2) = 1 + x + 2*x^2/2! + 8*x^3/3! + 49*x^4/4! + 402*x^5/5! + 4144*x^6/6! +...+ A058864(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(-2*LambertW[E^(-x)-1]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 2*(m+2)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    {A058864(n)=polcoeff(sum(m=0, n, (m+1)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    {a(n) = sum(k=0,n,binomial(n,k)*A058864(n-k)*A058864(k))}
    
  • PARI
    a(n)=sum(k=0, n, (-1)^(n-k)*stirling(n, k, 2)*2*(k+2)^(k-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2*lambertw(exp(-x)-1)))) \\ Seiichi Manyama, Nov 21 2021

Formula

E.g.f.: exp(-2*LambertW(exp(-x)-1)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*2*(k+2)^(k-1).
a(n) = Sum_{k=0..n} C(n,k)*A058864(n-k)*A058864(k); exponential convolution of A058864, which is the number of labeled chordal graphs (connected or not) on n nodes with no induced path P_4.
a(n) ~ 2*sqrt(exp(1)-1) * n^(n-1) / (exp(n-2) * (1-log(exp(1)-1))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013

A196556 O.g.f.: Sum_{n>=0} 3*(n+3)^(n-1) * x^n / Product_{k=1..n} (1+k*x).

Original entry on oeis.org

1, 3, 12, 66, 483, 4476, 50454, 671649, 10328118, 180341094, 3527385345, 76435691250, 1818255212490, 47118807865863, 1321527658352016, 39889359465259446, 1289471521115731611, 44450463108654209136, 1627806562174453037802
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2011

Keywords

Examples

			O.g.f.: A(x) = 1 + 3*x + 12*x^2 + 66*x^3 + 483*x^4 + 4476*x^5 +...
where the o.g.f. is given by:
A(x) = 1 + 3*4^0*x/(1+x) + 3*5^1*x^2/((1+x)*(1+2*x)) + 3*6^2*x^3/((1+x)*(1+2*x)*(1+3*x)) + 3*7^3*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
E.g.f.: A(x) = 1 + 3*x + 12*x^2/2! + 66*x^3/3! + 483*x^4/4! + 4476*x^5/5! +...
where the e.g.f. is given by:
A(x)^(1/3) = 1 + x + 2*x^2/2! + 8*x^3/3! + 49*x^4/4! + 402*x^5/5! + 4144*x^6/6! +...+ A058864(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(-3*LambertW[E^(-x)-1]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 3*(m+3)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    /* E.g.f. = G(x)^3 where G(x) = e.g.f. of A058864 */
    {A058864(n)=polcoeff(sum(m=0, n, (m+1)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    {a(n)=n!*polcoeff(sum(k=0,n,A058864(k)*x^k/k!+x*O(x^n))^3,n)}
    
  • PARI
    a(n)=sum(k=0, n, (-1)^(n-k)*stirling(n, k, 2)*3*(k+3)^(k-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-3*lambertw(exp(-x)-1)))) \\ Seiichi Manyama, Nov 21 2021

Formula

E.g.f.: exp(-3*LambertW(exp(-x)-1)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*3*(k+3)^(k-1).
E.g.f.: A(x) = G(x)^3 where G(x) = e.g.f. of A058864, which is the number of labeled chordal graphs (connected or not) on n nodes with no induced path P_4.
a(n) ~ 3*sqrt(exp(1)-1) * n^(n-1) / (exp(n-3) * (1-log(exp(1)-1))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013

A058865 Irregular table a(n,k) = number of connected labeled chordal graphs on n nodes with k edges, containing no induced path P_4, for n >= 1, 1 <= k <= n*(n-1)/2, read by rows; also the number of labeled trees with each vertex replaced by a clique.

Original entry on oeis.org

1, 0, 3, 1, 0, 0, 4, 12, 6, 1, 0, 0, 0, 5, 30, 75, 30, 30, 10, 1, 0, 0, 0, 0, 6, 60, 270, 360, 435, 270, 255, 80, 60, 15, 1, 0, 0, 0, 0, 0, 7, 105, 735, 1925, 2940, 3591, 4165, 2310, 2520, 1925, 882, 630, 175, 105, 21, 1, 0, 0, 0, 0, 0, 0, 8, 168, 1680, 7280, 16800
Offset: 1

Views

Author

Robert Castelo, Jan 06 2001

Keywords

Comments

A subclass of chordal-comparability graphs.

Examples

			The table starts:
   n | a(n, 1 <= k <= n(n-1)/2)
  ---+---------------------------
   1 | ()    (row length = 0: empty row)
   2 | 1
   3 | 0, 3, 1
   4 | 0, 0, 4, 12, 6, 1
   5 | 0, 0, 0, 5, 30, 75, 30, 30, 10, 1
  ...
		

Crossrefs

Cf. A000217 (row lengths, up to offset), A000292, A007134, A058863, A058864.
Cf. A356916.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==Binomial[n, 2], 1, Sum[Binomial[n, j]*(A[n-j, k-j*(2*n -1-j)/2] - T[n-j, k-j*(2*n-1-j)/2]), {j, n-2}]]; (* T = A058865 *)
    A[n_, k_]:= A[n, k]= T[n, k] + Sum[Sum[Binomial[n-1, j-1]*T[j, m]*A[n-j, k-m], {j, n-1}], {m, 0, k}]; (* A = A356916 *)
    Table[T[n, k], {n,2,12}, {k,Binomial[n, 2]}]//Flatten (* G. C. Greubel, Sep 03 2022 *)
  • PARI
    A58865=Map(); A058865(n,q) = if( q < n-1 || q >= n*(n-1)\2, q==n*(n-1)\2, mapisdefined(A58865, [n,q], &q), q, mapput(A58865, [n,q], q = sum(k=1,n-2, binomial(n,k)*(A356916(n-k, q - k*(k-1)/2 - k*(n-k)) - A058865(n-k, q - k*(k-1)\2 - (n-k)*k)))); q) \\ A356916 "outsourced" by M. F. Hasler, Sep 26 2022
    [[A058865(n,k)| k<-[1..n*(n-1)/2]] | n<-[1..7]] \\ M. F. Hasler, Sep 03 2022
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A058865
        if (k==binomial(n,2)): return 1
        else: return sum( binomial(n,j)*( A(n-j, k-j*(2*n-1-j)/2) - T(n-j, k-j*(2*n-1-j)/2) ) for j in (1..n-2) )
    @CachedFunction
    def A(n,k): # A = A356916
        return T(n,k) + sum(sum( binomial(n-1,j-1)*T(j,m)*A(n-j,k-m) for j in (1..n-1) ) for m in (0..k) )
    flatten([[T(n,k) for k in (1..binomial(n,2))] for n in (2..12)]) # G. C. Greubel, Sep 03 2022

Formula

Let A(n,k) be the total number of labeled P_4 - free chordal graphs on n vertices and q edges (= A356916), then:
a(n,q) = Sum_{k=1..n-2} binomial(n,k)*(A(n-k, q - k(k-1)/2 - k(n-k)) - a(n-k, q - k(k-1)/2 - k(n-k))) for q < n(n-1)/2 =: T(n), a(n, T(n)) = 1. [Corrected by M. F. Hasler, Sep 03 2022]
A(n,q) = a(n,q) + Sum_{k = 1..n-1} binomial(n-1, k-1)*Sum_{l = k-1..min(k(k-1)/2, q)} a(k,l)*A(n-k,q-l). [Simplified by M. F. Hasler, Sep 03 2022]
Particular values: a(n,k) = 0 for q < n-1; a(n, T(n)) = 1; a(n,n-1) = n; a(n, T(n)-1) = n(n-1)/2 for n > 2, a(n, n) = a(n, T(n)-2) = n(n-1)(n-2)/2 for n > 3. - M. F. Hasler, Sep 03 2022
From G. C. Greubel, Sep 03 2022: (Start)
a(n, binomial(n,2) - 1) = A000217(n+1) - [n=2], n >= 2.
a(n, n) = 3*A000292(n) - 2*[n=3], n >= 3.
Sum_{k=1..binomial(n,2)} a(n, k) = A058863(n). (End)

Extensions

Typo in a(6,11) corrected by G. C. Greubel, Sep 03 2022

A196557 O.g.f.: Sum_{n>=0} 4*(n+4)^(n-1) * x^n / Product_{k=1..n} (1+k*x).

Original entry on oeis.org

1, 4, 20, 128, 1036, 10308, 122560, 1701092, 27053556, 485683128, 9723771156, 214934627476, 5201286731560, 136818097071820, 3888121468512308, 118737900886653664, 3878569457507036988, 134960059001226137588, 4984357865462772982112
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2011

Keywords

Examples

			O.g.f.: A(x) = 1 + 4*x + 20*x^2 + 128*x^3 + 1036*x^4 + 10308*x^5 +...
where the o.g.f. is given by:
A(x) = 1 + 4*5^0*x/(1+x) + 4*6^1*x^2/((1+x)*(1+2*x)) + 4*7^2*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4*8^3*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
E.g.f.: A(x) = 1 + 4*x + 20*x^2/2! + 128*x^3/3! + 1036*x^4/4! + 10308*x^5/5! +...
where the e.g.f. is given by:
A(x)^(1/2) = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 186*x^4/4! + 1614*x^5/5! + 17332*x^6/6! +...+ A196555(n)*x^n/n! +...
A(x)^(1/4) = 1 + x + 2*x^2/2! + 8*x^3/3! + 49*x^4/4! + 402*x^5/5! + 4144*x^6/6! +...+ A058864(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(-4*LambertW[E^(-x)-1]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 4*(m+4)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    /* E.g.f. = G(x)^4 where G(x) = e.g.f. of A058864 */
    {A058864(n)=polcoeff(sum(m=0, n, (m+1)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    {a(n)=n!*polcoeff(sum(k=0,n,A058864(k)*x^k/k!+x*O(x^n))^4,n)}
    
  • PARI
    a(n)=sum(k=0, n, (-1)^(n-k)*stirling(n, k, 2)*4*(k+4)^(k-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-4*lambertw(exp(-x)-1)))) \\ Seiichi Manyama, Nov 21 2021

Formula

E.g.f.: exp(-4*LambertW(exp(-x)-1)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*4*(k+4)^(k-1).
E.g.f.: A(x) = G(x)^4 where G(x) = e.g.f. of A058864, which is the number of labeled chordal graphs (connected or not) on n nodes with no induced path P_4.
a(n) ~ 4*sqrt(exp(1)-1)*n^(n-1)/(exp(n-4)*(1-log(exp(1)-1))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013

A349527 a(n) = Sum_{k=0..n} (-1)^(n-k) * (2*k+1)^(k-1) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 4, 35, 469, 8502, 194807, 5402497, 175985390, 6587650497, 278674144201, 13148017697608, 684554867667117, 38988819551585477, 2411411875573335044, 160951864352781351959, 11531509389384310870257
Offset: 0

Views

Author

Seiichi Manyama, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k) * (2*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(2*k+1)^(k-1)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*(exp(-x)-1))/2)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (2*k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))

Formula

E.g.f. satisfies: log(A(x)) = (1 - exp(-x)) * A(x)^2.
E.g.f.: exp( -LambertW(2 * (exp(-x) - 1))/2 ).
G.f.: Sum_{k>=0} (2*k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ sqrt(2*exp(1) - 1) * sqrt(log(2/(2-exp(-1)))) * n^(n-1) / (2 * exp(n - 1/2) * (1 + log(2/(2*exp(1) - 1)))^n). - Vaclav Kotesovec, Nov 21 2021

A349528 a(n) = Sum_{k=0..n} (-1)^(n-k) * (3*k+1)^(k-1) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 6, 80, 1645, 45962, 1627080, 69817575, 3522349232, 204343964292, 13403304111515, 980876342339456, 79235384391436316, 7003257362607771709, 672285536392973397658, 69656231091367157111844, 7747832754070176901631621
Offset: 0

Views

Author

Seiichi Manyama, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k)*(3*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Nov 21 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(3*k+1)^(k-1)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(3*(exp(-x)-1))/3)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (3*k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))

Formula

E.g.f. satisfies: log(A(x)) = (1 - exp(-x)) * A(x)^3.
E.g.f.: exp( -LambertW(3 * (exp(-x) - 1))/3 ).
G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ sqrt(3*exp(1) - 1) * sqrt(log(3/(3-exp(-1)))) * n^(n-1) / (3 * exp(n - 1/3) * (1 + log(3/(3*exp(1) - 1)))^n). - Vaclav Kotesovec, Nov 21 2021

A349558 E.g.f. satisfies: log(A(x)) = (1 - exp(-x*A(x))) * A(x).

Original entry on oeis.org

1, 1, 4, 32, 393, 6547, 138046, 3525853, 105832964, 3651748332, 142429413387, 6196895235709, 297571887174040, 15632879134292045, 891910713837242092, 54919409605089141532, 3630105859259972654905, 256374187841461047791587
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k) * (n + k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(n+k+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+k+1)^(k-1) * Stirling2(n,k).
a(n) ~ sqrt((s-1)*s^3 / (1 + r*(2*s - 3)*s - r^2*(s-1)*s^2)) * n^(n-1) / (exp(n) * r^(n -1/2)), where r = 0.2202409288542107090687589144963703329896230236509... and s = 1.7315644042495989781932730410872588555151921253414... are roots of the system of equations s = s/exp(r*s) + log(s), (s-1)/s - (1 - r*s)/exp(r*s) = 0. - Vaclav Kotesovec, Nov 22 2021

A355782 E.g.f. satisfies log(A(x)) = 2 * (1 - exp(-x)) * A(x).

Original entry on oeis.org

1, 2, 10, 94, 1314, 24494, 572418, 16109678, 530772610, 20049256686, 854425665410, 40560727143534, 2122785621956226, 121440903560075246, 7539867236251002242, 504946360197545803630, 36284349255747713008770, 2784785703026225861819118
Offset: 0

Views

Author

Seiichi Manyama, Jul 16 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*(exp(-x)-1)))))
    
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*2^k*(k+1)^(k-1)*stirling(n, k, 2));

Formula

E.g.f.: exp( -LambertW(2 * (exp(-x) - 1)) ).
a(n) = Sum_{k=0..n} (-1)^(n-k) * 2^k * (k+1)^(k-1) * Stirling2(n,k).
From Vaclav Kotesovec, Jul 18 2022: (Start)
E.g.f.: LambertW(2 * (exp(-x) - 1)) / (2 * (exp(-x) - 1)).
a(n) ~ sqrt(2*exp(1) - 1) * sqrt(log(2/(2 - exp(-1)))) * n^(n-1) / (exp(n-1) * (log(2/(2*exp(1)-1)) + 1)^n). (End)
Showing 1-10 of 12 results. Next