cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349585 E.g.f. satisfies: A(x) * log(A(x)) = 1 - exp(-x).

Original entry on oeis.org

1, 1, -2, 8, -59, 642, -9112, 158839, -3279880, 78250188, -2117569181, 64082989720, -2144319848772, 78609355884893, -3133061858717806, 134884905211588892, -6238095343894356675, 308427209934965151158, -16234730389499986865092, 906409067599064528054343
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
         (m-1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> (-1)^(n-1)*b(n, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 03 2022
  • Mathematica
    a[n_] := (-1)^(n - 1) * Sum[If[k == 1, 1, (k - 1)^(k - 1)]*StirlingS2[n, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, (k-1)^(k-1)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(1-exp(-x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (-k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} (k-1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = exp( LambertW(1 - exp(-x)) ).
G.f.: Sum_{k>=0} (-k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ -(-1)^n * sqrt(1 + exp(1)) * n^(n-1) / (exp(n+1) * (log(1 + exp(1)) - 1)^(n - 1/2)). - Vaclav Kotesovec, Dec 05 2021

A349528 a(n) = Sum_{k=0..n} (-1)^(n-k) * (3*k+1)^(k-1) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 6, 80, 1645, 45962, 1627080, 69817575, 3522349232, 204343964292, 13403304111515, 980876342339456, 79235384391436316, 7003257362607771709, 672285536392973397658, 69656231091367157111844, 7747832754070176901631621
Offset: 0

Views

Author

Seiichi Manyama, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k)*(3*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Nov 21 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(3*k+1)^(k-1)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(3*(exp(-x)-1))/3)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (3*k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))

Formula

E.g.f. satisfies: log(A(x)) = (1 - exp(-x)) * A(x)^3.
E.g.f.: exp( -LambertW(3 * (exp(-x) - 1))/3 ).
G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ sqrt(3*exp(1) - 1) * sqrt(log(3/(3-exp(-1)))) * n^(n-1) / (3 * exp(n - 1/3) * (1 + log(3/(3*exp(1) - 1)))^n). - Vaclav Kotesovec, Nov 21 2021

A349599 E.g.f. satisfies: log(A(x)) = 1 - exp(-x*A(x)^2).

Original entry on oeis.org

1, 1, 4, 29, 305, 4192, 70875, 1416781, 32551650, 841273527, 24032201213, 747395938962, 24946766300549, 880465276003861, 32274320771151308, 1197240324544640433, 42849289206116498093, 1304855947753532683776, 14954863230501575196551, -2798084168801754024136463
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Comments

a(19) < 0.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(2*n+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (2*n+1)^(k-1) * Stirling2(n,k).
Showing 1-3 of 3 results.