cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349598 E.g.f. satisfies: log(A(x)) = exp(x*A(x)^2) - 1.

Original entry on oeis.org

1, 1, 6, 71, 1279, 31142, 958127, 35674921, 1560207964, 78410153193, 4453247964775, 282086867840252, 19718661737739301, 1507855981764016549, 125211854842018500134, 11220898483255456505555, 1079389691811367897870339, 110936313685240067472613726
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(2*n + 1)^(k - 1)*StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    a(n) = sum(k=0, n, (2*n+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (2*n+1)^(k-1) * Stirling2(n,k).
a(n) ~ s * n^(n-1) / (2 * sqrt(1 + r*s^2) * exp(n) * r^n), where r = 0.1513832219344136560178112221696108323993292386502... and s = 1.52429184135463908701026733917578550814344591549... are roots of the system of equations (1 + log(s))*2*r*s^2 = 1, 2*r*s^2*exp(r*s^2) = 1. - Vaclav Kotesovec, Nov 25 2021
Equivalently, a(n) ~ n^(n-1) / (2*sqrt(1 + LambertW(1/2)) * LambertW(1/2)^n * exp(3*n + 1 - (n + 1/2)/LambertW(1/2))). - Vaclav Kotesovec, Nov 26 2021

A349684 E.g.f. satisfies: log(A(x)) = 1 - exp(-x*A(x)^3).

Original entry on oeis.org

1, 1, 6, 71, 1273, 30737, 935217, 34366971, 1481055674, 73255529901, 4090716385913, 254574063103175, 17471577758796377, 1310989371574276201, 106774436938943155714, 9381218495657924393523, 884444646528793096915853, 89063007333443317630241605
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nterms=20;Table[Sum[(-1)^(n-k)(3n+1)^(k-1)StirlingS2[n,k],{k,0,n}],{n,0,nterms-1}] (* Paolo Xausa, Nov 25 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(3*n+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (3*n+1)^(k-1) * Stirling2(n,k).
a(n) ~ s * n^(n-1) / (3*sqrt(1 - r*s^3) * exp(n) * r^n), where r = -LambertW(-1/3) / exp(3 + 1/LambertW(-1/3)) = 0.15501985846382288988548853891763630846... and s = exp(1 + 1/(3*LambertW(-1/3))) = 1.5865317583949486858973892879410781361... are roots of the system of equations exp(-r*s^3) + log(s) = 1, exp(r*s^3) = 3*r*s^3. - Vaclav Kotesovec, Nov 26 2021
Showing 1-2 of 2 results.