A387557 a(n) = (1/2) * Sum_{k=0..floor(n/3)} 2^(n-3*k) * binomial(2*k+2,2*n-6*k+1).
1, 0, 0, 2, 4, 0, 3, 20, 12, 4, 56, 112, 37, 120, 504, 486, 300, 1584, 3175, 2124, 4196, 13736, 16576, 14560, 46217, 92336, 87024, 145226, 391124, 540192, 584267, 1397444, 2742332, 3162828, 4973640, 11517840, 17306989, 21377448, 43440616, 82902062, 108691196
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,4,0,-1,4,-4).
Crossrefs
Cf. A387516.
Programs
-
Magma
[&+[2^(n-3*k) * Binomial(2*k+2, 2*n-6*k+1)/2: k in [0..Floor(n/3)]]: n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
-
Mathematica
Table[Sum[2^(n-3*k)*Binomial[2*k+2, 2*n-6*k+1]/2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Sep 02 2025 *)
-
PARI
a(n) = sum(k=0, n\3, 2^(n-3*k)*binomial(2*k+2, 2*n-6*k+1))/2;
Formula
G.f.: B(x)^2, where B(x) is the g.f. of A387516.
G.f.: 1/((1-x^3-2*x^4)^2 - 8*x^7).
a(n) = 2*a(n-3) + 4*a(n-4) - a(n-6) + 4*a(n-7) - 4*a(n-8).