cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349585 E.g.f. satisfies: A(x) * log(A(x)) = 1 - exp(-x).

Original entry on oeis.org

1, 1, -2, 8, -59, 642, -9112, 158839, -3279880, 78250188, -2117569181, 64082989720, -2144319848772, 78609355884893, -3133061858717806, 134884905211588892, -6238095343894356675, 308427209934965151158, -16234730389499986865092, 906409067599064528054343
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
         (m-1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> (-1)^(n-1)*b(n, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 03 2022
  • Mathematica
    a[n_] := (-1)^(n - 1) * Sum[If[k == 1, 1, (k - 1)^(k - 1)]*StirlingS2[n, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, (k-1)^(k-1)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(1-exp(-x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (-k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} (k-1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = exp( LambertW(1 - exp(-x)) ).
G.f.: Sum_{k>=0} (-k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ -(-1)^n * sqrt(1 + exp(1)) * n^(n-1) / (exp(n+1) * (log(1 + exp(1)) - 1)^(n - 1/2)). - Vaclav Kotesovec, Dec 05 2021

A349527 a(n) = Sum_{k=0..n} (-1)^(n-k) * (2*k+1)^(k-1) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 4, 35, 469, 8502, 194807, 5402497, 175985390, 6587650497, 278674144201, 13148017697608, 684554867667117, 38988819551585477, 2411411875573335044, 160951864352781351959, 11531509389384310870257
Offset: 0

Views

Author

Seiichi Manyama, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k) * (2*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(2*k+1)^(k-1)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*(exp(-x)-1))/2)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (2*k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))

Formula

E.g.f. satisfies: log(A(x)) = (1 - exp(-x)) * A(x)^2.
E.g.f.: exp( -LambertW(2 * (exp(-x) - 1))/2 ).
G.f.: Sum_{k>=0} (2*k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ sqrt(2*exp(1) - 1) * sqrt(log(2/(2-exp(-1)))) * n^(n-1) / (2 * exp(n - 1/2) * (1 + log(2/(2*exp(1) - 1)))^n). - Vaclav Kotesovec, Nov 21 2021

A349684 E.g.f. satisfies: log(A(x)) = 1 - exp(-x*A(x)^3).

Original entry on oeis.org

1, 1, 6, 71, 1273, 30737, 935217, 34366971, 1481055674, 73255529901, 4090716385913, 254574063103175, 17471577758796377, 1310989371574276201, 106774436938943155714, 9381218495657924393523, 884444646528793096915853, 89063007333443317630241605
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nterms=20;Table[Sum[(-1)^(n-k)(3n+1)^(k-1)StirlingS2[n,k],{k,0,n}],{n,0,nterms-1}] (* Paolo Xausa, Nov 25 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(3*n+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (3*n+1)^(k-1) * Stirling2(n,k).
a(n) ~ s * n^(n-1) / (3*sqrt(1 - r*s^3) * exp(n) * r^n), where r = -LambertW(-1/3) / exp(3 + 1/LambertW(-1/3)) = 0.15501985846382288988548853891763630846... and s = exp(1 + 1/(3*LambertW(-1/3))) = 1.5865317583949486858973892879410781361... are roots of the system of equations exp(-r*s^3) + log(s) = 1, exp(r*s^3) = 3*r*s^3. - Vaclav Kotesovec, Nov 26 2021
Showing 1-3 of 3 results.