A058864
Number of labeled chordal graphs (connected or not) on n nodes with no induced path P_4.
Original entry on oeis.org
1, 2, 8, 49, 402, 4144, 51515, 750348, 12537204, 236424087, 4967735896, 115102258660, 2915655255385, 80164472149454, 2377679022913612, 75674858155603353, 2572626389524849478, 93040490884813025684, 3566833833735159397963, 144485408698878208399296
Offset: 1
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 417.
- G. C. Greubel, Table of n, a(n) for n = 1..398
- R. Castelo and N. C. Wormald, Enumeration of P4-free chordal graphs.
- R. Castelo and N. C. Wormald, Enumeration of P4-Free chordal graphs, Graphs and Combinatorics, 19:467-474, 2003.
- M. C. Golumbic, Trivially perfect graphs, Discr. Math. 24(1) (1978), 105-107.
- Venkatesan Guruswami, Enumerative aspects of certain subclasses of perfect graphs, Discrete Math. 205 (1999), 97-117.
- T. H. Ma and J. P. Spinrad, Cycle-free partial orders and chordal comparability graphs, Order, 1991, 8:49-61.
- E. S. Wolk, A note on the comparability graph of a tree, Proc. Am. Math. Soc., 1965, 16:17-20.
-
Rest[With[{nmax = 50}, CoefficientList[Series[Exp[-LambertW[Exp[-x] - 1]], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Nov 14 2017 *)
a[n_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*(k+1)^(k-1), {k, 0, n}];
Array[a, 18] (* Jean-François Alcover, Dec 17 2017, after Vladeta Jovovic *)
-
{a(n)=polcoeff(sum(m=1, n, (m+1)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
-
for(n=1,10, print1(sum(k=0, n, (-1)^(n-k)*stirling(n,k,2)*(k+1)^(k-1)), ", ")) \\ G. C. Greubel, Nov 14 2017
A196555
O.g.f.: Sum_{n>=0} 2*(n+2)^(n-1) * x^n / Product_{k=1..n} (1+k*x).
Original entry on oeis.org
1, 2, 6, 28, 186, 1614, 17332, 222254, 3317326, 56532264, 1083571422, 23081180918, 541047188936, 13843339479298, 383952455939662, 11475711580482268, 367729128426998450, 12577206203908139494, 457341567152354085700, 17619050162270848917366
Offset: 0
O.g.f.: A(x) = 1 + 2*x + 6*x^2 + 28*x^3 + 186*x^4 + 1614*x^5 +...
where the o.g.f. is given by:
A(x) = 1 + 2*3^0*x/(1+x) + 2*4^1*x^2/((1+x)*(1+2*x)) + 2*5^2*x^3/((1+x)*(1+2*x)*(1+3*x)) + 2*6^3*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 186*x^4/4! + 1614*x^5/5! +...
where the e.g.f. is given by:
A(x)^(1/2) = 1 + x + 2*x^2/2! + 8*x^3/3! + 49*x^4/4! + 402*x^5/5! + 4144*x^6/6! +...+ A058864(n)*x^n/n! +...
-
CoefficientList[Series[E^(-2*LambertW[E^(-x)-1]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, 2*(m+2)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
-
{A058864(n)=polcoeff(sum(m=0, n, (m+1)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
{a(n) = sum(k=0,n,binomial(n,k)*A058864(n-k)*A058864(k))}
-
a(n)=sum(k=0, n, (-1)^(n-k)*stirling(n, k, 2)*2*(k+2)^(k-1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2*lambertw(exp(-x)-1)))) \\ Seiichi Manyama, Nov 21 2021
A196557
O.g.f.: Sum_{n>=0} 4*(n+4)^(n-1) * x^n / Product_{k=1..n} (1+k*x).
Original entry on oeis.org
1, 4, 20, 128, 1036, 10308, 122560, 1701092, 27053556, 485683128, 9723771156, 214934627476, 5201286731560, 136818097071820, 3888121468512308, 118737900886653664, 3878569457507036988, 134960059001226137588, 4984357865462772982112
Offset: 0
O.g.f.: A(x) = 1 + 4*x + 20*x^2 + 128*x^3 + 1036*x^4 + 10308*x^5 +...
where the o.g.f. is given by:
A(x) = 1 + 4*5^0*x/(1+x) + 4*6^1*x^2/((1+x)*(1+2*x)) + 4*7^2*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4*8^3*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
E.g.f.: A(x) = 1 + 4*x + 20*x^2/2! + 128*x^3/3! + 1036*x^4/4! + 10308*x^5/5! +...
where the e.g.f. is given by:
A(x)^(1/2) = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 186*x^4/4! + 1614*x^5/5! + 17332*x^6/6! +...+ A196555(n)*x^n/n! +...
A(x)^(1/4) = 1 + x + 2*x^2/2! + 8*x^3/3! + 49*x^4/4! + 402*x^5/5! + 4144*x^6/6! +...+ A058864(n)*x^n/n! +...
-
CoefficientList[Series[E^(-4*LambertW[E^(-x)-1]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, 4*(m+4)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
-
/* E.g.f. = G(x)^4 where G(x) = e.g.f. of A058864 */
{A058864(n)=polcoeff(sum(m=0, n, (m+1)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
{a(n)=n!*polcoeff(sum(k=0,n,A058864(k)*x^k/k!+x*O(x^n))^4,n)}
-
a(n)=sum(k=0, n, (-1)^(n-k)*stirling(n, k, 2)*4*(k+4)^(k-1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-4*lambertw(exp(-x)-1)))) \\ Seiichi Manyama, Nov 21 2021
A349528
a(n) = Sum_{k=0..n} (-1)^(n-k) * (3*k+1)^(k-1) * Stirling2(n,k).
Original entry on oeis.org
1, 1, 6, 80, 1645, 45962, 1627080, 69817575, 3522349232, 204343964292, 13403304111515, 980876342339456, 79235384391436316, 7003257362607771709, 672285536392973397658, 69656231091367157111844, 7747832754070176901631621
Offset: 0
-
a[n_] := Sum[(-1)^(n - k)*(3*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Nov 21 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*(3*k+1)^(k-1)*stirling(n, k, 2));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(3*(exp(-x)-1))/3)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (3*k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))
Showing 1-4 of 4 results.
Comments