A334824 Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).
1, 3, 0, 15, 0, -1, 105, 0, -10, 0, 945, 0, -105, 0, 1, 10395, 0, -1260, 0, 21, 0, 135135, 0, -17325, 0, 378, 0, -1, 2027025, 0, -270270, 0, 6930, 0, -36, 0, 34459425, 0, -4729725, 0, 135135, 0, -990, 0, 1, 654729075, 0, -91891800, 0, 2837835, 0, -25740, 0, 55, 0, 13749310575, 0, -1964187225, 0, 64324260, 0, -675675, 0, 2145, 0, -1
Offset: 0
Examples
Polynomials: g(0, x) = 1; g(1, x) = 3*x; g(2, x) = 15*x^2 - 1; g(3, x) = 105*x^3 - 10*x; g(4, x) = 945*x^4 - 105*x^2 + 1; g(5, x) = 10395*x^5 - 1260*x^3 + 21*x; g(6, x) = 135135*x^6 - 17325*x^4 + 378*x^2 - 1; g(7, x) = 2027025*x^7 - 270270*x^5 + 6930*x^3 - 36*x. Triangle of coefficients begins as: 1; 3, 0; 15, 0, -1; 105, 0, -10, 0; 945, 0, -105, 0, 1; 10395, 0, -1260, 0, 21, 0; 135135, 0, -17325, 0, 378, 0, -1; 2027025, 0, -270270, 0, 6930, 0, -36, 0.
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- J.-H. Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendantes et logarithmiques (Memoir on some properties that can be traced from circular transcendent and logarithmic quantities), Histoire de l’Académie royale des sciences et belles-lettres (1761), Berlin. See also.
Crossrefs
Programs
-
Magma
C := ComplexField(); T:= func< n, k| Round( i^k*Factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k+1)*Factorial(n-k)) ) >; [T(n,k): k in [0..n], n in [0..10]];
-
Maple
T:= (n, k) -> I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!); seq(seq(T(n, k), k = 0..n), n = 0..10);
-
Mathematica
(* First program *) y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x]; g[n_, k_]:= Coefficient[((-I)^n/2)*(y[n+1, I*x] + (-1)^n*y[n+1, -I*x]), x, k]; Table[g[n, k], {n,0,10}, {k,n,0,-1}]//Flatten (* Second program *) Table[I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
Sage
[[ i^k*factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*factorial(k+1)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
Formula
Equals the coefficients of the polynomials, g(n, x), defined by: (Start)
g(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k+1)!/((2*k+1)!*(n-2*k)!))*(x/2)^(n-2*k).
g(n, x) = ((2*n+1)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 3/2, -n, -n-1/2; -1/x^2).
g(n, x) = ((-i)^n/2)*(y(n+1, i*x) + (-1)^n*y(n+1, -i*x)), where y(n, x) are the Bessel Polynomials.
g(n, x) = (2*n-1)*x*g(n-1, x) - g(n-2, x).
E.g.f. of g(n, x): sin((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
g(n, 2) = (-1)^n*g(n, -2) = A053987(n+1). (End)
As a number triangle:
T(n, k) = i^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), where i = sqrt(-1).
T(n, 0) = A001147(n+1).
Comments