A090301
a(n) = 15*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 15.
Original entry on oeis.org
2, 15, 227, 3420, 51527, 776325, 11696402, 176222355, 2655031727, 40001698260, 602680505627, 9080209282665, 136805819745602, 2061167505466695, 31054318401746027, 467875943531657100, 7049193471376602527
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 15*a(3) + a(2) = 15*3420 + 227 = ((15+sqrt(229))/2)^4 + ((15-sqrt(229))/2)^4 = 51526.9999805 + 0.0000194 = 51527.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14), this sequence (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25),
A087281 (m=29),
A087287 (m=76),
A089772 (m=199).
-
m:=15;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 31 2019
-
m:=15; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 31 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 15*I/2)), n = 0..20); # G. C. Greubel, Dec 31 2019
-
LucasL[Range[20]-1, 15] (* G. C. Greubel, Dec 31 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 15*I/2) ) \\ G. C. Greubel, Dec 31 2019
-
[2*(-I)^n*chebyshev_T(n, 15*I/2) for n in (0..20)] # G. C. Greubel, Dec 31 2019
A090306
a(n) = 17*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 17.
Original entry on oeis.org
2, 17, 291, 4964, 84679, 1444507, 24641298, 420346573, 7170533039, 122319408236, 2086600473051, 35594527450103, 607193567124802, 10357885168571737, 176691241432844331, 3014108989526925364, 51416544063390575519
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 17*a(3) + a(2) = 17*4964 + 291=((17+sqrt(293))/2)^4 + ((17-sqrt(293))/2)^4 = 84678.999988190 + 0.000011809 = 84679.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16), this sequence (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=17;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=17; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 17*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{17,1},{2,17},30] (* Harvey P. Dale, Jan 24 2018 *)
LucasL[Range[20]-1, 17] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 17*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 17*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090309
a(n) = 20*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 20.
Original entry on oeis.org
2, 20, 402, 8060, 161602, 3240100, 64963602, 1302512140, 26115206402, 523606640180, 10498248010002, 210488566840220, 4220269584814402, 84615880263128260, 1696537874847379602, 34015373377210720300
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 20*a(3) + a(2) = 20*8060 + 402 = (10+sqrt(101))^4 + (10-sqrt(101))^4 = 161601.999993811 + 0.000006188 = 161602.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19), this sequence (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=20;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=20; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 10*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{20,1},{2,20},20] (* Harvey P. Dale, Nov 19 2015 *)
LucasL[Range[20]-1,20] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 10*I) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 10*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090310
a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.
Original entry on oeis.org
2, 21, 443, 9324, 196247, 4130511, 86936978, 1829807049, 38512885007, 810600392196, 17061121121123, 359094143935779, 7558038143772482, 159077895163157901, 3348193836570088403, 70471148463135014364
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 21*a(3) + a(2) = 21*9324 + 443 = ((21+sqrt(445))/2)^4 + ((21-sqrt(445))/2)^4 = 196246.9999949043 + 0.0000050956 = 196247.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20), this sequence (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=21;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=21; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 21*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{21,1},{2,21},40] (* or *) CoefficientList[ Series[ (2-21x)/(1-21x-x^2),{x,0,40}],x] (* Harvey P. Dale, Apr 24 2011 *)
LucasL[Range[20]-1,21] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 21*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 21*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090305
a(n) = 16*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 16.
Original entry on oeis.org
2, 16, 258, 4144, 66562, 1069136, 17172738, 275832944, 4430499842, 71163830416, 1143051786498, 18359992414384, 294902930416642, 4736806879080656, 76083812995707138, 1222077814810394864, 19629328849962024962
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 16*a(3) + a(2) = 16*4144 + 258 = (8+sqrt(65))^4 + (8-sqrt(65))^4 = 66561.99998497... + 0.00001502... = 66562.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15), this sequence (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25),
A087281 (m=29),
A087287 (m=76),
A089772 (m=199).
-
m:=16;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 31 2019
-
m:=16; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 31 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 8*I)), n = 0..20); # G. C. Greubel, Dec 31 2019
-
LinearRecurrence[{16,1},{2,16},40] (* or *) With[{c=Sqrt[65]}, Simplify/@ Table[(c-8)((8+c)^n-(8-c)^n (129+16c)),{n,20}]] (* Harvey P. Dale, Oct 31 2011 *)
LucasL[Range[20]-1, 16] (* G. C. Greubel, Dec 31 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 8*I) ) \\ G. C. Greubel, Dec 31 2019
-
[2*(-I)^n*chebyshev_T(n, 8*I) for n in (0..20)] # G. C. Greubel, Dec 31 2019
A090307
a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.
Original entry on oeis.org
2, 18, 326, 5886, 106274, 1918818, 34644998, 625528782, 11294163074, 203920464114, 3681862517126, 66477445772382, 1200275886420002, 21671443401332418, 391286257110403526, 7064824071388595886
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 18*a(3) + a(2) = 18*5886 + 326 = (9+sqrt(82))^4 + (9-sqrt(82))^4 = 106273.9999905903 + 0.000009406 = 106274.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17), this sequence (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=18;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=18; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 9*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{18,1},{2,18},25] (* or *) CoefficientList[ Series[ (2-18x)/(1-18x-x^2),{x,0,25}],x] (* Harvey P. Dale, Apr 22 2011 *)
LucasL[Range[20]-1, 18] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 9*I) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 9*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090308
a(n) = 19*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 19.
Original entry on oeis.org
2, 19, 363, 6916, 131767, 2510489, 47831058, 911300591, 17362542287, 330799604044, 6302555019123, 120079344967381, 2287810109399362, 43588471423555259, 830468767156949283, 15822495047405591636
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 19*a(3) + a(2) = 19*6916 + 363 = ((19+sqrt(365))/2)^4 + ((19-sqrt(365))/2)^4 = 131766.9999924108 + 0.0000075891 = 131767.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18), this sequence (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=19;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=19; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 19*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LucasL[Range[20]-1,20] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 19*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 19*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090313
a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.
Original entry on oeis.org
2, 22, 486, 10714, 236194, 5206982, 114789798, 2530582538, 55787605634, 1229857906486, 27112661548326, 597708411969658, 13176697724880802, 290485058359347302, 6403847981630521446, 141175140654230819114
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 236194 = 22*a(3) + a(2) = 22*10714 + 486 = (11 + sqrt(122))^4 + (11 - sqrt(122))^4 = 236193.999995766 + 0.000004233 = 236194.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21), this sequence (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=22;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=22; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 11*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LucasL[Range[20]-1,22] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 11*I) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 11*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090314
a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.
Original entry on oeis.org
2, 23, 531, 12236, 281959, 6497293, 149719698, 3450050347, 79500877679, 1831970236964, 42214816327851, 972772745777537, 22415987969211202, 516540496037635183, 11902847396834820411, 274282030623238504636, 6320389551731320427039, 145643241720443608326533, 3356114949121934311937298
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 281959 = 23*a(3) + a(2) = 23*12236 + 531 = ((23 + sqrt(533))/2)^4 + ((23 - sqrt(533))/2)^4 = 281958.999996453 + 0.000003546 = 281959.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22), this sequence (m=23),
A090316 (m=24),
A330767 (m=25).
-
a:=[2,23];; for n in [3..20] do a[n]:=23*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
-
I:=[2,23]; [n le 2 select I[n] else 23*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 23*I/2)), n = 0..20); # G. C. Greubel, Dec 29 2019
-
LinearRecurrence[{23,1},{2,23},20] (* Harvey P. Dale, Jul 11 2014 *)
LucasL[Range[20]-1,23] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 23*I/2) ) \\ G. C. Greubel, Dec 29 2019
-
[2*(-I)^n*chebyshev_T(n, 23*I/2) for n in (0..20)] # G. C. Greubel, Dec 29 2019
A090316
a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.
Original entry on oeis.org
2, 24, 578, 13896, 334082, 8031864, 193098818, 4642403496, 111610782722, 2683301188824, 64510839314498, 1550943444736776, 37287153512997122, 896442627756667704, 21551910219673022018, 518142287899909196136, 12456966819817493729282, 299485345963519758698904
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) =334082 = 24a(3) + a(2) = 24*13896+ 578 = (12+sqrt(145))^4 + (12-sqrt(145))^4 = 334081.99999700672 + 0.00000299327 = 334082.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23), this sequence (m=24),
A330767 (m=25).
-
a:=[2,24];; for n in [3..20] do a[n]:=24*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
-
I:=[2,24]; [n le 2 select I[n] else 24*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 12*I)), n = 0..20); # G. C. Greubel, Dec 29 2019
-
LinearRecurrence[{24,1},{2,24},20] (* Harvey P. Dale, Aug 30 2015 *)
LucasL[Range[20]-1,24] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 12*I) ) \\ G. C. Greubel, Dec 29 2019
-
[2*(-I)^n*chebyshev_T(n, 12*I) for n in (0..20)] # G. C. Greubel, Dec 29 2019
Showing 1-10 of 11 results.
Comments