cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308504 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n+k).

Original entry on oeis.org

1, 1, 5, 1, 9, 28, 1, 17, 82, 273, 1, 33, 244, 1057, 3126, 1, 65, 730, 4161, 15626, 47450, 1, 129, 2188, 16513, 78126, 282252, 823544, 1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			a(4) = a(2*3/2 + 1) = sigma_3(1) = 1.
a(5) = a(2*3/2 + 2) = sigma_3(2) = 1^3 + 2^3 = 9.
a(6) = a(2*3/2 + 3) = sigma_3(3) = 1^3 + 3^3 = 28.
Square array begins:
       1,      1,       1,        1,        1, ...
       5,      9,      17,       33,       65, ...
      28,     82,     244,      730,     2188, ...
     273,   1057,    4161,    16513,    65793, ...
    3126,  15626,   78126,   390626,  1953126, ...
   47450, 282252, 1686434, 10097892, 60526250, ...
		

Crossrefs

Columns k=0..2 give A023887, A294645, A294810.
A(n,n) gives A308570.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(n+k) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - (j*x)^j)^(j^(k-1))).
a((i-1)*i/2 + j) = sigma_i(j) for 1 <= j <= i.

A296601 L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^k) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 9, 28, 81, 126, 330, 344, 833, 973, 1754, 1332, 5034, 2198, 5658, 8688, 13313, 4914, 28779, 6860, 54106, 45752, 33482, 12168, 254954, 93751, 78906, 255880, 505698, 24390, 1510700, 29792, 1671169, 1791312, 647114, 2819544, 12637371, 50654, 2282346, 14779520, 34058298, 68922, 68084220
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Examples

			L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 81*x^4/4 + 126*x^5/5 + 330*x^6/6 + 344*x^7/7 + 833*x^8/8 + 973*x^9/9 + ...
exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 42*x^4 + 103*x^5 + 289*x^6 + 690*x^7 + 1771*x^8 + 4206*x^9 + ... + A266941(n)*x^n + ...
		

Crossrefs

Column k=2 of A308502.

Programs

  • Mathematica
    nmax = 42; Rest[CoefficientList[Series[-Log[Product[(1 - k x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 42; Rest[CoefficientList[Series[Sum[k^3 x^k/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Sum[d^(n/d + 2), {d, Divisors[n]}]; Table[a[n], {n, 1, 42}]
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>=1} k^3*x^k/(1 - k*x^k).
a(n) = Sum_{d|n} d^(n/d+2).
a(p) = p^3 + 1 where p is a prime.
From Seiichi Manyama, Jun 24 2019: (Start)
Suppose given two sequences f(n) and g(n), n>0, we define a new sequence a(n), n>0, by a(n) = Sum_{d|n} d*f(d)*g(d)^(n/d).
L.g.f.: -log(Product_{n>0} (1 - g(n)*x^n)^f(n)) = Sum_{n>0} a(n)*x^n/n. (See A266964.)
If we set f(n) = n and g(n) = n, we get this sequence. (End)

A308668 a(n) = Sum_{d|n} d^(n/d+n).

Original entry on oeis.org

1, 9, 82, 1089, 15626, 287010, 5764802, 135270401, 3487315843, 100244173394, 3138428376722, 107072686593858, 3937376385699290, 155601328490478978, 6568412173896940652, 295165920677390712833, 14063084452067724991010
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Crossrefs

Diagonal of A308502.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n/# + n) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n,d,d^(n/d+n));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-k*(k*x)^k)^(1/k)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k^(k+1)*x^k))) \\ Seiichi Manyama, Mar 17 2021
    
  • Python
    from sympy import divisors
    def A308668(n): return sum(d**(n//d+n) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

L.g.f.: -log(Product_{k>=1} (1 - k*(k*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k+1) * x^k/(1 - k^(k+1) * x^k). - Seiichi Manyama, Mar 17 2021
a(n) ~ n^(n+1). - Vaclav Kotesovec, Aug 30 2025
Showing 1-3 of 3 results.