cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294645 a(n) = Sum_{d|n} d^(n+1).

Original entry on oeis.org

1, 9, 82, 1057, 15626, 282252, 5764802, 134480385, 3486843451, 100048830174, 3138428376722, 107006334784468, 3937376385699290, 155572843119354936, 6568408508343827972, 295150156996346511361, 14063084452067724991010, 708236696816416252145973
Offset: 1

Views

Author

Seiichi Manyama, Nov 05 2017

Keywords

Crossrefs

Column k=1 of A308504.

Programs

  • Mathematica
    Table[DivisorSigma[n + 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n) = sigma(n, n+1)}
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+1)*x^k/(1-(k*x)^k)))
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-(k*x)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>0} k^(k+1)*x^k/(1-(k*x)^k).
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 02 2019
a(n) ~ n^(n+1). - Vaclav Kotesovec, Oct 07 2020

A308502 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n/d + k).

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 9, 1, 17, 28, 25, 6, 1, 33, 82, 81, 26, 24, 1, 65, 244, 289, 126, 80, 8, 1, 129, 730, 1089, 626, 330, 50, 41, 1, 257, 2188, 4225, 3126, 1604, 344, 161, 37, 1, 513, 6562, 16641, 15626, 8634, 2402, 833, 163, 68, 1, 1025, 19684, 66049, 78126, 49100, 16808, 5249, 973, 290, 12
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			Square array begins:
    1,  1,   1,    1,    1,     1, ...
    3,  5,   9,   17,   33,    65, ...
    4, 10,  28,   82,  244,   730, ...
    9, 25,  81,  289, 1089,  4225, ...
    6, 26, 126,  626, 3126, 15626, ...
   24, 80, 330, 1604, 8634, 49100, ...
		

Crossrefs

Columns k=0..2 give A055225, A078308, A296601.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(n/# + k) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - j*x^j)^(j^(k-1))).

A308570 a(n) = sigma_{2*n}(n).

Original entry on oeis.org

1, 17, 730, 65793, 9765626, 2177317874, 678223072850, 281479271743489, 150094635684419611, 100000095367432689202, 81402749386839761113322, 79496851942053939878082786, 91733330193268616658399616010, 123476696151234472370970011268514
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2019

Keywords

Crossrefs

Diagonal of A308504.
Column k=2 of A308569.
Cf. A073705.

Programs

  • Mathematica
    Table[DivisorSigma[2 n, n], {n, 1, 20}] (* Vaclav Kotesovec, Jun 08 2019 *)
  • PARI
    {a(n) = sigma(n, 2*n)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^2*x)^k)^(1/k)))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k^2*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.
a(n) ~ n^(2*n). - Vaclav Kotesovec, Jun 08 2019

A308569 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n).

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 1, 17, 28, 3, 1, 65, 730, 273, 2, 1, 257, 19684, 65793, 3126, 4, 1, 1025, 531442, 16781313, 9765626, 47450, 2, 1, 4097, 14348908, 4295032833, 30517578126, 2177317874, 823544, 4, 1, 16385, 387420490, 1099512676353, 95367431640626, 101560344351050, 678223072850, 16843009, 3
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2019

Keywords

Examples

			Square array begins:
   1,    1,       1,           1,              1, ...
   2,    5,      17,          65,            257, ...
   2,   28,     730,       19684,         531442, ...
   3,  273,   65793,    16781313,     4295032833, ...
   2, 3126, 9765626, 30517578126, 95367431640626, ...
		

Crossrefs

Columns k=0..2 give A000005, A023887, A308570.
Rows n=1..2 give A000012, A052539.
A(n,n) gives A308571.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*n) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
  • PARI
    T(n,k) = sumdiv(n, d, d^(k*n));
    matrix(5, 5, n, k, T(n,k-1)) \\ Michel Marcus, Jun 08 2019

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - (j^k*x)^j)^(1/j)).
Showing 1-4 of 4 results.