cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308504 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n+k).

Original entry on oeis.org

1, 1, 5, 1, 9, 28, 1, 17, 82, 273, 1, 33, 244, 1057, 3126, 1, 65, 730, 4161, 15626, 47450, 1, 129, 2188, 16513, 78126, 282252, 823544, 1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			a(4) = a(2*3/2 + 1) = sigma_3(1) = 1.
a(5) = a(2*3/2 + 2) = sigma_3(2) = 1^3 + 2^3 = 9.
a(6) = a(2*3/2 + 3) = sigma_3(3) = 1^3 + 3^3 = 28.
Square array begins:
       1,      1,       1,        1,        1, ...
       5,      9,      17,       33,       65, ...
      28,     82,     244,      730,     2188, ...
     273,   1057,    4161,    16513,    65793, ...
    3126,  15626,   78126,   390626,  1953126, ...
   47450, 282252, 1686434, 10097892, 60526250, ...
		

Crossrefs

Columns k=0..2 give A023887, A294645, A294810.
A(n,n) gives A308570.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(n+k) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - (j*x)^j)^(j^(k-1))).
a((i-1)*i/2 + j) = sigma_i(j) for 1 <= j <= i.

A308569 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n).

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 1, 17, 28, 3, 1, 65, 730, 273, 2, 1, 257, 19684, 65793, 3126, 4, 1, 1025, 531442, 16781313, 9765626, 47450, 2, 1, 4097, 14348908, 4295032833, 30517578126, 2177317874, 823544, 4, 1, 16385, 387420490, 1099512676353, 95367431640626, 101560344351050, 678223072850, 16843009, 3
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2019

Keywords

Examples

			Square array begins:
   1,    1,       1,           1,              1, ...
   2,    5,      17,          65,            257, ...
   2,   28,     730,       19684,         531442, ...
   3,  273,   65793,    16781313,     4295032833, ...
   2, 3126, 9765626, 30517578126, 95367431640626, ...
		

Crossrefs

Columns k=0..2 give A000005, A023887, A308570.
Rows n=1..2 give A000012, A052539.
A(n,n) gives A308571.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*n) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
  • PARI
    T(n,k) = sumdiv(n, d, d^(k*n));
    matrix(5, 5, n, k, T(n,k-1)) \\ Michel Marcus, Jun 08 2019

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - (j^k*x)^j)^(1/j)).

A367551 a(n) = Sum_{d|n} (d^2+1)^n.

Original entry on oeis.org

2, 29, 1008, 84162, 11881408, 2566742098, 781250000128, 318651789038947, 167619551409708544, 110462353708225871026, 89116503268220597579776, 86380568889558343409300388, 99045780329059370000000008192
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (d^2+1)^n);

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * sigma_{2*k}(n).
Showing 1-3 of 3 results.