A023882
Expansion of g.f.: 1/Product_{n>0} (1 - n^n * x^n).
Original entry on oeis.org
1, 1, 5, 32, 304, 3537, 52010, 895397, 18016416, 410889848, 10523505770, 298220329546, 9274349837081, 313761671751672, 11474635626789410, 450964042480390679, 18954785687060988578, 848386888530723146912
Offset: 0
-
m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
-
seq(coeff(series(1/mul(1-k^k*x^k,k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
-
nmax=20; CoefficientList[Series[Product[1/(1-k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 19 2015 *)
-
m=20; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-k^k*x^k))) \\ G. C. Greubel, Oct 30 2018
A292312
Expansion of Product_{k>=1} (1 - k^k*x^k).
Original entry on oeis.org
1, -1, -4, -23, -229, -2761, -42615, -758499, -15702086, -365588036, -9516954786, -273061566624, -8575969258607, -292418459301779, -10762887030763337, -425243370397722674, -17953905924215881215, -806666656048846472309
Offset: 0
-
m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1 - k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
seq(coeff(series(mul((1-k^k*x^k),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
-
terms = 18; CoefficientList[Product[(1 - k^k*x^k), {k, 1, terms}] + O[x]^(terms), x] (* Jean-François Alcover, Nov 11 2017 *)
-
{a(n) = polcoeff(prod(k=1, n, 1-k^k*x^k+x*O(x^n)), n)}
A294810
a(n) = Sum_{d|n} d^(n+2).
Original entry on oeis.org
1, 17, 244, 4161, 78126, 1686434, 40353608, 1074791425, 31381236757, 1000244144722, 34522712143932, 1283997101947770, 51185893014090758, 2177986570740006274, 98526126098761952664, 4722384497336874434561, 239072435685151324847154
Offset: 1
-
Table[Total[Divisors[n]^(n+2)],{n,20}] (* Harvey P. Dale, Dec 23 2023 *)
-
{a(n) = sigma(n, n+2)}
-
N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+2)*x^k/(1-(k*x)^k)))
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^k)))) \\ Seiichi Manyama, Jun 02 2019
A308504
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n+k).
Original entry on oeis.org
1, 1, 5, 1, 9, 28, 1, 17, 82, 273, 1, 33, 244, 1057, 3126, 1, 65, 730, 4161, 15626, 47450, 1, 129, 2188, 16513, 78126, 282252, 823544, 1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173
Offset: 1
a(4) = a(2*3/2 + 1) = sigma_3(1) = 1.
a(5) = a(2*3/2 + 2) = sigma_3(2) = 1^3 + 2^3 = 9.
a(6) = a(2*3/2 + 3) = sigma_3(3) = 1^3 + 3^3 = 28.
Square array begins:
1, 1, 1, 1, 1, ...
5, 9, 17, 33, 65, ...
28, 82, 244, 730, 2188, ...
273, 1057, 4161, 16513, 65793, ...
3126, 15626, 78126, 390626, 1953126, ...
47450, 282252, 1686434, 10097892, 60526250, ...
-
T[n_, k_] := DivisorSum[n, #^(n+k) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
A342675
a(n) = Sum_{d|n} d^(n-d+1).
Original entry on oeis.org
1, 3, 4, 13, 6, 120, 8, 1161, 2197, 16148, 12, 603190, 14, 5773008, 50422464, 201359377, 18, 16590656229, 20, 269768284118, 4748723771432, 3138430473896, 24, 2972582195034162, 476837158203151, 3937376419253748, 1350852564961601560, 4066515044181860654, 30, 1036488835382356683530, 32
Offset: 1
-
a[n_] := DivisorSum[n, #^(n - # + 1) &]; Array[a, 30] (* Amiram Eldar, Mar 18 2021 *)
-
a(n) = sumdiv(n, d, d^(n-d+1));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-(k*x)^k)))
A158095
G.f.: A(x) = exp( Sum_{n>=1} 2*sigma(n,n-1)*x^n/n ).
Original entry on oeis.org
1, 2, 5, 14, 61, 370, 3454, 40880, 614346, 10848514, 222870183, 5175100204, 134514302384, 3859406052466, 121274242936381, 4139268759072626, 152532132931199062, 6034430112251517608, 255114747410233804986
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 61*x^4 + 370*x^5 +...
-
a(n)=polcoeff(exp(sum(m=1,n,2*sigma(m,m-1)*x^m/m)+x*O(x^n)),n)
A294773
a(n) = Sum_{d|n} d^(d+n+1).
Original entry on oeis.org
1, 33, 2188, 262273, 48828126, 13060753578, 4747561509944, 2251799880796161, 1350851717674586413, 1000000000152587898818, 895430243255237372246532, 953962166441299506564257602, 1192533292512492016559195008118
Offset: 1
-
a[n_] := DivisorSum[n, #^(# + n + 1) &]; Array[a, 13] (* Amiram Eldar, Oct 04 2023 *)
-
{a(n) = sumdiv(n, d, d^(d+n+1))}
A294955
a(n) = Sum_{d|n} d^(2*n+2).
Original entry on oeis.org
1, 65, 6562, 1049601, 244140626, 78368963450, 33232930569602, 18014467229220865, 12157665462543713203, 10000002384185795209930, 9849732675807611094711842, 11447546167874515876354097130, 15502932802662396215269535105522
Offset: 1
A342677
a(n) = Sum_{d|n} (n/d)^(n-d+1).
Original entry on oeis.org
1, 5, 28, 265, 3126, 46916, 823544, 16793633, 387422677, 10001953190, 285311670612, 8916464313700, 302875106592254, 11112103714568680, 437893891601739648, 18446779258148749825, 827240261886336764178, 39346424755299348744797, 1978419655660313589123980
Offset: 1
-
a[n_] := DivisorSum[n, (n/#)^(n - # + 1) &]; Array[a, 20] (* Amiram Eldar, Mar 18 2021 *)
-
a(n) = sumdiv(n, d, (n/d)^(n-d+1));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-k^(k-1)*x^k)))
A308763
a(n) = Sum_{d|n} d^(n-2).
Original entry on oeis.org
1, 2, 4, 21, 126, 1394, 16808, 266305, 4785157, 100390882, 2357947692, 61978939050, 1792160394038, 56707753666594, 1946196290656824, 72061992352890881, 2862423051509815794, 121441386937936123331, 5480386857784802185940, 262145000003883417004506
Offset: 1
-
a[n_] := DivisorSum[n, #^(n - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
-
{a(n) = sigma(n, n-2)}
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^3)))))
-
N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-(k*x)^k)))
Showing 1-10 of 11 results.