cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A023882 Expansion of g.f.: 1/Product_{n>0} (1 - n^n * x^n).

Original entry on oeis.org

1, 1, 5, 32, 304, 3537, 52010, 895397, 18016416, 410889848, 10523505770, 298220329546, 9274349837081, 313761671751672, 11474635626789410, 450964042480390679, 18954785687060988578, 848386888530723146912
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series(1/mul(1-k^k*x^k,k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 19 2015 *)
  • PARI
    m=20; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-k^k*x^k))) \\ G. C. Greubel, Oct 30 2018
    

Formula

Log of g.f.: Sum_{k>=1} (sigma(k, k+1)/k) x^k, where sigma(k, q) is the sum of the q-th powers of the divisors of k.
a(n) ~ n^n * (1 + exp(-1)/n + (1/2*exp(-1)+5*exp(-2))/n^2). - Vaclav Kotesovec, Dec 19 2015
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294645(k)*a(n-k) for n > 0. - Seiichi Manyama, Nov 09 2017

A292312 Expansion of Product_{k>=1} (1 - k^k*x^k).

Original entry on oeis.org

1, -1, -4, -23, -229, -2761, -42615, -758499, -15702086, -365588036, -9516954786, -273061566624, -8575969258607, -292418459301779, -10762887030763337, -425243370397722674, -17953905924215881215, -806666656048846472309
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2017

Keywords

Crossrefs

Column k=1 of A294653.

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1 - k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    seq(coeff(series(mul((1-k^k*x^k),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    terms = 18; CoefficientList[Product[(1 - k^k*x^k), {k, 1, terms}] + O[x]^(terms), x] (* Jean-François Alcover, Nov 11 2017 *)
  • PARI
    {a(n) = polcoeff(prod(k=1, n, 1-k^k*x^k+x*O(x^n)), n)}
    

Formula

Convolution inverse of A023882.
a(n) ~ -n^n * (1 - exp(-1)/n - (exp(-1)/2 + 4*exp(-2))/n^2). - Vaclav Kotesovec, Sep 14 2017
a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294645(k)*a(n-k) for n > 0. - Seiichi Manyama, Nov 09 2017

A294810 a(n) = Sum_{d|n} d^(n+2).

Original entry on oeis.org

1, 17, 244, 4161, 78126, 1686434, 40353608, 1074791425, 31381236757, 1000244144722, 34522712143932, 1283997101947770, 51185893014090758, 2177986570740006274, 98526126098761952664, 4722384497336874434561, 239072435685151324847154
Offset: 1

Views

Author

Seiichi Manyama, Nov 09 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Divisors[n]^(n+2)],{n,20}] (* Harvey P. Dale, Dec 23 2023 *)
  • PARI
    {a(n) = sigma(n, n+2)}
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+2)*x^k/(1-(k*x)^k)))
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>0} k^(k+2)*x^k/(1-(k*x)^k).
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^k) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 02 2019

A308504 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n+k).

Original entry on oeis.org

1, 1, 5, 1, 9, 28, 1, 17, 82, 273, 1, 33, 244, 1057, 3126, 1, 65, 730, 4161, 15626, 47450, 1, 129, 2188, 16513, 78126, 282252, 823544, 1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			a(4) = a(2*3/2 + 1) = sigma_3(1) = 1.
a(5) = a(2*3/2 + 2) = sigma_3(2) = 1^3 + 2^3 = 9.
a(6) = a(2*3/2 + 3) = sigma_3(3) = 1^3 + 3^3 = 28.
Square array begins:
       1,      1,       1,        1,        1, ...
       5,      9,      17,       33,       65, ...
      28,     82,     244,      730,     2188, ...
     273,   1057,    4161,    16513,    65793, ...
    3126,  15626,   78126,   390626,  1953126, ...
   47450, 282252, 1686434, 10097892, 60526250, ...
		

Crossrefs

Columns k=0..2 give A023887, A294645, A294810.
A(n,n) gives A308570.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(n+k) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - (j*x)^j)^(j^(k-1))).
a((i-1)*i/2 + j) = sigma_i(j) for 1 <= j <= i.

A342675 a(n) = Sum_{d|n} d^(n-d+1).

Original entry on oeis.org

1, 3, 4, 13, 6, 120, 8, 1161, 2197, 16148, 12, 603190, 14, 5773008, 50422464, 201359377, 18, 16590656229, 20, 269768284118, 4748723771432, 3138430473896, 24, 2972582195034162, 476837158203151, 3937376419253748, 1350852564961601560, 4066515044181860654, 30, 1036488835382356683530, 32
Offset: 1

Views

Author

Seiichi Manyama, Mar 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - # + 1) &]; Array[a, 30] (* Amiram Eldar, Mar 18 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d+1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-(k*x)^k)))

Formula

G.f.: Sum_{k>=1} k * x^k/(1 - (k * x)^k).
If p is prime, a(p) = 1 + p.

A158095 G.f.: A(x) = exp( Sum_{n>=1} 2*sigma(n,n-1)*x^n/n ).

Original entry on oeis.org

1, 2, 5, 14, 61, 370, 3454, 40880, 614346, 10848514, 222870183, 5175100204, 134514302384, 3859406052466, 121274242936381, 4139268759072626, 152532132931199062, 6034430112251517608, 255114747410233804986
Offset: 0

Views

Author

Paul D. Hanna, Mar 20 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 61*x^4 + 370*x^5 +...
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(exp(sum(m=1,n,2*sigma(m,m-1)*x^m/m)+x*O(x^n)),n)

A294773 a(n) = Sum_{d|n} d^(d+n+1).

Original entry on oeis.org

1, 33, 2188, 262273, 48828126, 13060753578, 4747561509944, 2251799880796161, 1350851717674586413, 1000000000152587898818, 895430243255237372246532, 953962166441299506564257602, 1192533292512492016559195008118
Offset: 1

Views

Author

Seiichi Manyama, Nov 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# + n + 1) &]; Array[a, 13] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(d+n+1))}

A294955 a(n) = Sum_{d|n} d^(2*n+2).

Original entry on oeis.org

1, 65, 6562, 1049601, 244140626, 78368963450, 33232930569602, 18014467229220865, 12157665462543713203, 10000002384185795209930, 9849732675807611094711842, 11447546167874515876354097130, 15502932802662396215269535105522
Offset: 1

Views

Author

Seiichi Manyama, Nov 12 2017

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sigma(n, 2*n+2)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*k+2)*x^k/(1-(k^2*x)^k)))

Formula

G.f.: Sum_{k>0} k^(2*k+2)*x^k/(1-(k^2*x)^k).

A342677 a(n) = Sum_{d|n} (n/d)^(n-d+1).

Original entry on oeis.org

1, 5, 28, 265, 3126, 46916, 823544, 16793633, 387422677, 10001953190, 285311670612, 8916464313700, 302875106592254, 11112103714568680, 437893891601739648, 18446779258148749825, 827240261886336764178, 39346424755299348744797, 1978419655660313589123980
Offset: 1

Views

Author

Seiichi Manyama, Mar 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^(n - # + 1) &]; Array[a, 20] (* Amiram Eldar, Mar 18 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(n-d+1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-k^(k-1)*x^k)))

Formula

G.f.: Sum_{k>=1} (k * x)^k/(1 - k^(k-1) * x^k).
If p is prime, a(p) = 1 + p^p.

A308763 a(n) = Sum_{d|n} d^(n-2).

Original entry on oeis.org

1, 2, 4, 21, 126, 1394, 16808, 266305, 4785157, 100390882, 2357947692, 61978939050, 1792160394038, 56707753666594, 1946196290656824, 72061992352890881, 2862423051509815794, 121441386937936123331, 5480386857784802185940, 262145000003883417004506
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sigma(n, n-2)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^3)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-(k*x)^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^3)) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k-2) * x^k/(1 - (k*x)^k).
Showing 1-10 of 11 results. Next