cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A294809 Expansion of Product_{k>=1} (1 - k^k*x^k)^k.

Original entry on oeis.org

1, -1, -8, -73, -927, -13969, -254580, -5288596, -124795126, -3272571133, -94692028369, -2991756529687, -102571647087930, -3791499758414848, -150359326161180392, -6367668575791613601, -286854342016830115157, -13697147209040205869792
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n, g(n) = n^n.

Crossrefs

Column k=1 of A294808.
Cf. A294810.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k^k*x^k)^k))

Formula

a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294810(k)*a(n-k) for n > 0.

A308504 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n+k).

Original entry on oeis.org

1, 1, 5, 1, 9, 28, 1, 17, 82, 273, 1, 33, 244, 1057, 3126, 1, 65, 730, 4161, 15626, 47450, 1, 129, 2188, 16513, 78126, 282252, 823544, 1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			a(4) = a(2*3/2 + 1) = sigma_3(1) = 1.
a(5) = a(2*3/2 + 2) = sigma_3(2) = 1^3 + 2^3 = 9.
a(6) = a(2*3/2 + 3) = sigma_3(3) = 1^3 + 3^3 = 28.
Square array begins:
       1,      1,       1,        1,        1, ...
       5,      9,      17,       33,       65, ...
      28,     82,     244,      730,     2188, ...
     273,   1057,    4161,    16513,    65793, ...
    3126,  15626,   78126,   390626,  1953126, ...
   47450, 282252, 1686434, 10097892, 60526250, ...
		

Crossrefs

Columns k=0..2 give A023887, A294645, A294810.
A(n,n) gives A308570.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(n+k) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - (j*x)^j)^(j^(k-1))).
a((i-1)*i/2 + j) = sigma_i(j) for 1 <= j <= i.

A294813 Expansion of Product_{k>=1} 1/(1 - k^k*x^k)^k.

Original entry on oeis.org

1, 1, 9, 90, 1162, 17435, 310193, 6286826, 144750451, 3717959194, 105725550762, 3293914191401, 111659484775650, 4089936343858976, 160992739588472076, 6776415674628574634, 303714862444753023205, 14439925495117621425535
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = n^n.

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k^k*x^k)^k))

Formula

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294810(k)*a(n-k) for n > 0.
a(n) ~ n^(n+1). - Vaclav Kotesovec, Nov 10 2017

A294955 a(n) = Sum_{d|n} d^(2*n+2).

Original entry on oeis.org

1, 65, 6562, 1049601, 244140626, 78368963450, 33232930569602, 18014467229220865, 12157665462543713203, 10000002384185795209930, 9849732675807611094711842, 11447546167874515876354097130, 15502932802662396215269535105522
Offset: 1

Views

Author

Seiichi Manyama, Nov 12 2017

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sigma(n, 2*n+2)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*k+2)*x^k/(1-(k^2*x)^k)))

Formula

G.f.: Sum_{k>0} k^(2*k+2)*x^k/(1-(k^2*x)^k).

A308763 a(n) = Sum_{d|n} d^(n-2).

Original entry on oeis.org

1, 2, 4, 21, 126, 1394, 16808, 266305, 4785157, 100390882, 2357947692, 61978939050, 1792160394038, 56707753666594, 1946196290656824, 72061992352890881, 2862423051509815794, 121441386937936123331, 5480386857784802185940, 262145000003883417004506
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sigma(n, n-2)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^3)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-(k*x)^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^3)) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k-2) * x^k/(1 - (k*x)^k).
Showing 1-5 of 5 results.