A294809
Expansion of Product_{k>=1} (1 - k^k*x^k)^k.
Original entry on oeis.org
1, -1, -8, -73, -927, -13969, -254580, -5288596, -124795126, -3272571133, -94692028369, -2991756529687, -102571647087930, -3791499758414848, -150359326161180392, -6367668575791613601, -286854342016830115157, -13697147209040205869792
Offset: 0
A308504
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d^(n+k).
Original entry on oeis.org
1, 1, 5, 1, 9, 28, 1, 17, 82, 273, 1, 33, 244, 1057, 3126, 1, 65, 730, 4161, 15626, 47450, 1, 129, 2188, 16513, 78126, 282252, 823544, 1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173
Offset: 1
a(4) = a(2*3/2 + 1) = sigma_3(1) = 1.
a(5) = a(2*3/2 + 2) = sigma_3(2) = 1^3 + 2^3 = 9.
a(6) = a(2*3/2 + 3) = sigma_3(3) = 1^3 + 3^3 = 28.
Square array begins:
1, 1, 1, 1, 1, ...
5, 9, 17, 33, 65, ...
28, 82, 244, 730, 2188, ...
273, 1057, 4161, 16513, 65793, ...
3126, 15626, 78126, 390626, 1953126, ...
47450, 282252, 1686434, 10097892, 60526250, ...
-
T[n_, k_] := DivisorSum[n, #^(n+k) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
A294813
Expansion of Product_{k>=1} 1/(1 - k^k*x^k)^k.
Original entry on oeis.org
1, 1, 9, 90, 1162, 17435, 310193, 6286826, 144750451, 3717959194, 105725550762, 3293914191401, 111659484775650, 4089936343858976, 160992739588472076, 6776415674628574634, 303714862444753023205, 14439925495117621425535
Offset: 0
A294955
a(n) = Sum_{d|n} d^(2*n+2).
Original entry on oeis.org
1, 65, 6562, 1049601, 244140626, 78368963450, 33232930569602, 18014467229220865, 12157665462543713203, 10000002384185795209930, 9849732675807611094711842, 11447546167874515876354097130, 15502932802662396215269535105522
Offset: 1
A308763
a(n) = Sum_{d|n} d^(n-2).
Original entry on oeis.org
1, 2, 4, 21, 126, 1394, 16808, 266305, 4785157, 100390882, 2357947692, 61978939050, 1792160394038, 56707753666594, 1946196290656824, 72061992352890881, 2862423051509815794, 121441386937936123331, 5480386857784802185940, 262145000003883417004506
Offset: 1
-
a[n_] := DivisorSum[n, #^(n - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
-
{a(n) = sigma(n, n-2)}
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^3)))))
-
N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-(k*x)^k)))
Showing 1-5 of 5 results.
Comments