cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A023881 Number of partitions in expanding space: sigma(n,q) is the sum of the q-th powers of the divisors of n.

Original entry on oeis.org

1, 1, 3, 12, 82, 725, 8811, 128340, 2257687, 45658174, 1052672116, 27108596725, 772945749970, 24137251258926, 819742344728692, 30069017799172228, 1184889562926838573, 49914141857616862435
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 725*x^5 + 8811*x^6 + 128340*x^7 + 2257687*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-k^k*x^k)^(1/k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series(mul((1-k^k*x^k)^(-1/k),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax=30; CoefficientList[Series[Product[1/(1-k^k*x^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* G. C. Greubel, Oct 31 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, sigma(k, k) * x^k / k, x * O(x^n))), n))} /* Michael Somos, Feb 15 2006 */
    
  • PARI
    {a(n)=if(n<0,0,polcoeff(prod(k=1,n,(1-k^k*x^k+x*O(x^n))^(-1/k)),n))} /* Paul D. Hanna */
    

Formula

G.f.: exp( Sum_{k>0} sigma_k(k) * x^k / k). - Michael Somos, Feb 15 2006
G.f.: Product_{n>=1} (1 - n^n*x^n)^(-1/n). - Paul D. Hanna, Mar 08 2011
a(n) ~ n^(n-1). - Vaclav Kotesovec, Oct 08 2016

A294645 a(n) = Sum_{d|n} d^(n+1).

Original entry on oeis.org

1, 9, 82, 1057, 15626, 282252, 5764802, 134480385, 3486843451, 100048830174, 3138428376722, 107006334784468, 3937376385699290, 155572843119354936, 6568408508343827972, 295150156996346511361, 14063084452067724991010, 708236696816416252145973
Offset: 1

Views

Author

Seiichi Manyama, Nov 05 2017

Keywords

Crossrefs

Column k=1 of A308504.

Programs

  • Mathematica
    Table[DivisorSigma[n + 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n) = sigma(n, n+1)}
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+1)*x^k/(1-(k*x)^k)))
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-(k*x)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>0} k^(k+1)*x^k/(1-(k*x)^k).
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 02 2019
a(n) ~ n^(n+1). - Vaclav Kotesovec, Oct 07 2020

A265949 Expansion of Product_{k>=1} (1 + k^k*x^k).

Original entry on oeis.org

1, 1, 4, 31, 283, 3489, 50913, 890635, 17891170, 409850236, 10494427982, 297780829216, 9261266862273, 313453533534739, 11464487066049791, 450644378868285130, 18942868694407904729, 847930346323808122469, 40266107916200371331007, 2021842180288047801103956
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    seq(coeff(series(mul((1+k^k*x^k),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax=20; CoefficientList[Series[Product[(1+k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1, m, (1+k^k*x^k))) \\ G. C. Greubel, Oct 31 2018
    

Formula

a(n) ~ n^n * (1 + exp(-1)/n + ((1/2)*exp(-1) + 4*exp(-2))/n^2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d + 1)*d^(k+1) ) * x^k/k). - Ilya Gutkovskiy, Nov 08 2018

A292312 Expansion of Product_{k>=1} (1 - k^k*x^k).

Original entry on oeis.org

1, -1, -4, -23, -229, -2761, -42615, -758499, -15702086, -365588036, -9516954786, -273061566624, -8575969258607, -292418459301779, -10762887030763337, -425243370397722674, -17953905924215881215, -806666656048846472309
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2017

Keywords

Crossrefs

Column k=1 of A294653.

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1 - k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    seq(coeff(series(mul((1-k^k*x^k),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    terms = 18; CoefficientList[Product[(1 - k^k*x^k), {k, 1, terms}] + O[x]^(terms), x] (* Jean-François Alcover, Nov 11 2017 *)
  • PARI
    {a(n) = polcoeff(prod(k=1, n, 1-k^k*x^k+x*O(x^n)), n)}
    

Formula

Convolution inverse of A023882.
a(n) ~ -n^n * (1 - exp(-1)/n - (exp(-1)/2 + 4*exp(-2))/n^2). - Vaclav Kotesovec, Sep 14 2017
a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294645(k)*a(n-k) for n > 0. - Seiichi Manyama, Nov 09 2017

A356530 Expansion of e.g.f. Product_{k>0} 1/(1 - (k * x)^k)^(1/k^k).

Original entry on oeis.org

1, 1, 4, 18, 156, 1020, 23040, 189000, 8462160, 174741840, 8418513600, 110288455200, 26670240273600, 364684824504000, 46300470369753600, 5169242034644688000, 359472799348030368000, 7508907247291081632000, 6157317530690533823616000
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(k*x)^k)^(1/k^k))))
    
  • PARI
    a356529(n) = (n-1)!*sumdiv(n, d, d^(n-d+1));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356529(j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A356529(k) * binomial(n-1,k-1) * a(n-k).

A300520 Expansion of Product_{k>=1} 1 / (1 - Fibonacci(k)*x^k).

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 31, 57, 113, 212, 410, 757, 1464, 2684, 5083, 9380, 17569, 32120, 59977, 109193, 202046, 367951, 675541, 1224453, 2243795, 4052369, 7377243, 13314989, 24140198, 43406515, 78510429, 140800279, 253663615, 454352111, 815790813, 1457485309
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-Fibonacci[k]*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

log(a(n)) ~ log(phi)*n + 2*sqrt(polylog(2, 1/sqrt(5))*n) - 3*(log(n)/4), where polylog(2, 1/sqrt(5)) = 0.5107013915606224266804289751265205446721... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio.

A294758 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1-j^(k*j)*x^j) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 32, 5, 1, 1, 65, 746, 304, 7, 1, 1, 257, 19748, 66538, 3537, 11, 1, 1, 1025, 531698, 16801060, 9843827, 52010, 15, 1, 1, 4097, 14349932, 4295564530, 30535638897, 2188210276, 895397, 22, 1, 1, 16385, 387424586, 1099527026284, 95371863254051, 101591953731770, 680615495493, 18016416, 30
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2017

Keywords

Examples

			Square array begins:
   1,   1,     1,        1, ...
   1,   1,     1,        1, ...
   2,   5,    17,       65, ...
   3,  32,   746,    19748, ...
   5, 304, 66538, 16801060, ...
		

Crossrefs

Columns k=0..1 give A000041, A023882.
Rows n=0-1 give A000012.
Cf. A294653.

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*j)) * A(n-j,k) for n > 0.

A356487 Expansion of e.g.f. Product_{k>0} 1/(1 - (k * x)^k)^(1/k!).

Original entry on oeis.org

1, 1, 6, 45, 580, 7105, 170076, 2654575, 116426528, 2386183761, 209503380160, 3455683548691, 969334978024920, 15164681616944353, 6510178188269825720, 223847763757748796975, 81261936394687862700256, 1581790511799886415713825
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(k*x)^k)^(1/k!))))
    
  • PARI
    a356486(n) = (n-1)!*sumdiv(n, d, d^n/(d-1)!);
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356486(j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A356486(k) * binomial(n-1,k-1) * a(n-k).

A292311 Expansion of Product_{k>=1} 1/(1 + k^k*x^k).

Original entry on oeis.org

1, -1, -3, -24, -216, -2801, -42166, -762397, -15685040, -366477168, -9523974486, -273453483050, -8583651341879, -292700900034984, -10770969729108326, -425541512224476567, -17964544188354355022, -807097409926675847400
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2017

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff(1/prod(k=1, n, 1+k^k*x^k+x*O(x^n)), n)}

Formula

Convolution inverse of A265949.
a(n) ~ -n^n * (1 - exp(-1)/n - (exp(-1)/2 + 3*exp(-2))/n^2). - Vaclav Kotesovec, Sep 14 2017

A292406 Expansion of Product_{k>=1} ((1 + k^k*x^k)/(1 - k^k*x^k)).

Original entry on oeis.org

1, 2, 10, 72, 670, 7896, 113572, 1939028, 38463550, 869985586, 22098989952, 622728621984, 19271496576612, 649553583740576, 23680212403186584, 928276782505698920, 38931911577966732814, 1739307919812511213916, 82457732209611432170734
Offset: 0

Views

Author

Seiichi Manyama, Sep 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + k^k*x^k)/(1 - k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2017 *)

Formula

Convolution of A023882 and A265949.
a(n) ~ 2*n^n * (1 + 2*exp(-1)/n + (exp(-1) + 10*exp(-2))/n^2). - Vaclav Kotesovec, Sep 16 2017
Showing 1-10 of 13 results. Next