cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A158952 Inverse Euler transform of the number of partitions in expanding space (A023881).

Original entry on oeis.org

1, 2, 9, 67, 625, 7903, 117649, 2105342, 43048905, 1000976352, 25937424601, 743191207969, 23298085122481, 793763217701693, 29192928060852217, 1152939097060278256, 48661191875666868481, 2185919903971766191000
Offset: 1

Views

Author

Paul D. Hanna, Mar 31 2009

Keywords

Examples

			Let G(x) = Sum_{n>=0} A023881(n)*x^n then
G(x) = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 725*x^5 + 8811*x^6 +...
G(x) = 1/[(1-x)*(1-x^2)^2*(1-x^3)^9*(1-x^4)^67*(1-x^5)^625*...].
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[d, d]*MoebiusMu[n/d], {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Oct 09 2019 *)
  • PARI
    {a(n)=(1/n)*sumdiv(n,d,sigma(d,d)*moebius(n/d))}

Formula

a(n) = (1/n)*Sum_{d|n} sigma(d,d)*moebius(n/d).
a(n) ~ n^(n-1). - Vaclav Kotesovec, Oct 09 2019

A023887 a(n) = sigma_n(n): sum of n-th powers of divisors of n.

Original entry on oeis.org

1, 5, 28, 273, 3126, 47450, 823544, 16843009, 387440173, 10009766650, 285311670612, 8918294543346, 302875106592254, 11112685048647250, 437893920912786408, 18447025552981295105, 827240261886336764178, 39346558271492178925595, 1978419655660313589123980
Offset: 1

Views

Author

Keywords

Comments

Logarithmic derivative of A023881.
Compare to A217872(n) = sigma(n)^n.

Examples

			The divisors of 6 are 1, 2, 3 and 6, so a(6) = 1^6 + 2^6 + 3^6 + 6^6 = 47450.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

Crossrefs

Programs

Formula

G.f.: Sum_{n>0} (n*x)^n/(1-(n*x)^n). - Vladeta Jovovic, Oct 27 2002
From Nick Hobson, Nov 25 2006: (Start)
If the canonical prime factorization of n > 1 is the product of p^e(p) then sigma_n(n) = Product_p ((p^(n*(e(p)+1)))-1)/(p^n-1).
sigma_n(n) is odd if and only if n is a square or twice a square. (End)
Conjecture: sigma_m(n) = sigma(n^m * rad(n)^(m-1))/sigma(rad(n)^(m-1)) for n > 0 and m > 0, where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 24 2017
a(n) ~ n^n. - Vaclav Kotesovec, Nov 02 2018
Sum_{n>=1} 1/a(n) = A199858. - Amiram Eldar, Nov 19 2020

Extensions

Edited by N. J. A. Sloane, Nov 25 2006

A205814 G.f.: Product_{n>=1} [ (1 - 2^n*x^n) / (1 - (n+2)^n*x^n) ]^(1/n).

Original entry on oeis.org

1, 1, 9, 54, 482, 4239, 55561, 785554, 14133055, 285547760, 6666380256, 172748192767, 4974178683908, 156462697434990, 5354832107694444, 197710292330150160, 7839473395324929677, 332071887435037103895, 14968498613432649146050, 715294449027151380463781
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2012

Keywords

Comments

Here sigma(n,k) equals the sum of the k-th powers of the divisors of n.

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 54*x^3 + 482*x^4 + 4239*x^5 + 55561*x^6 +...
where the g.f. equals the product:
A(x) = (1-2*x)/(1-3*x) * ((1-2^2*x^2)/(1-4^2*x^2))^(1/2) * ((1-2^3*x^3)/(1-5^3*x^3))^(1/3) * ((1-2^4*x^4)/(1-6^4*x^4))^(1/4) * ((1-2^5*x^5)/(1-7^5*x^5))^(1/5) *...
The logarithm equals the l.g.f. of A205815:
log(A(x)) = x + 17*x^2/2 + 136*x^3/3 + 1585*x^4/4 + 16986*x^5/5 +...
		

Crossrefs

Cf. A205815 (log), A205811, A023881.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=1, m, binomial(m, k)*sigma(m, k)*2^(m-k))+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(prod(k=1, n, ((1-2^k*x^k)/(1-(k+2)^k*x^k +x*O(x^n)))^(1/k)), n)}

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 2^(n-k) ).
a(n) ~ exp(2) * n^(n-1). - Vaclav Kotesovec, Oct 08 2016

A186633 G.f.: Product_{n>=1} (1 + n^n*x^n)^(1/n).

Original entry on oeis.org

1, 1, 2, 11, 71, 705, 8470, 127284, 2231342, 45505041, 1048341387, 27059612615, 771505041184, 24109351520196, 818862556900962, 30044548635160841, 1184027932446520895, 49883835880381353808, 2237276988838875420087
Offset: 0

Views

Author

Paul D. Hanna, Mar 19 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 71*x^4 + 705*x^5 +...
A(x) = (1 + x) *(1 + 4*x^2)^(1/2) *(1 + 27*x^3)^(1/3) *(1 + 256*x^4)^(1/4) *...
		

Crossrefs

Cf. variant: A023881.

Programs

  • PARI
    {a(n)=if(n<0, 0, polcoeff(prod(k=1, n, (1+k^k*x^k+x*O(x^n))^(1/k)), n))}

Formula

a(n) ~ n^(n-1). - Vaclav Kotesovec, Nov 06 2014

A205811 G.f.: Product_{n>=1} [ (1 - x^n) / (1 - (n+1)^n*x^n) ]^(1/n).

Original entry on oeis.org

1, 1, 6, 29, 221, 1897, 23502, 335334, 5923570, 119354491, 2758647259, 71079498533, 2031108928680, 63520842121792, 2161164726505952, 79394066773371245, 3133259427956392983, 132166451829847198316, 5934636812034634649249, 282609413111134846839482
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2012

Keywords

Comments

Here sigma(n,k) equals the sum of the k-th powers of the divisors of n.

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 29*x^3 + 221*x^4 + 1897*x^5 + 23502*x^6 +...
where the g.f. equals the product:
A(x) = (1-x)/(1-2*x) * ((1-x^2)/(1-3^2*x^2))^(1/2) * ((1-x^3)/(1-4^3*x^3))^(1/3) * ((1-x^4)/(1-5^4*x^4))^(1/4) * ((1-x^5)/(1-6^5*x^5))^(1/5) *...
The logarithm equals the l.g.f. of A205812:
log(A(x)) = x + 11*x^2/2 + 70*x^3/3 + 719*x^4/4 + 7806*x^5/5 + 122534*x^6/6 +...
		

Crossrefs

Cf. A205812 (log), A205814, A023881.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=1,m,binomial(m,k)*sigma(m,k))+x*O(x^n))),n)}
    
  • PARI
    {a(n)=polcoeff(prod(k=1,n,((1-x^k)/(1-(k+1)^k*x^k +x*O(x^n)))^(1/k)),n)}

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k) * sigma(n,k) ).

A158095 G.f.: A(x) = exp( Sum_{n>=1} 2*sigma(n,n-1)*x^n/n ).

Original entry on oeis.org

1, 2, 5, 14, 61, 370, 3454, 40880, 614346, 10848514, 222870183, 5175100204, 134514302384, 3859406052466, 121274242936381, 4139268759072626, 152532132931199062, 6034430112251517608, 255114747410233804986
Offset: 0

Views

Author

Paul D. Hanna, Mar 20 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 61*x^4 + 370*x^5 +...
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(exp(sum(m=1,n,2*sigma(m,m-1)*x^m/m)+x*O(x^n)),n)

A163203 G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d^n] * x^n/n ).

Original entry on oeis.org

1, 1, 2, 11, 79, 713, 8486, 127372, 2248390, 45527161, 1048442107, 27060812167, 771886991408, 24110090108332, 818871809076474, 30044771201925569, 1184069354974499199, 49884064948928968400, 2237283630465903060711
Offset: 0

Views

Author

Paul D. Hanna, Jul 22 2009

Keywords

Comments

A variant of A023881, which is defined by g.f.:
exp( Sum_{n>=1} [Sum_{d|n} d^n] * x^n/n )
where A023881 is the number of partitions in expanding space.
Compare also to the g.f. of A006950 given by:
exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d] * x^n/n ),
where A006950(n) is the number of partitions of n in which each even part occurs with even multiplicity.

Examples

			G.f.: 1 + x + 2*x^2 + 11*x^3 + 79*x^4 + 713*x^5 + 8486*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, (-1)^(m-d)*d^m)*x^m/m)+x*O(x^n)), n)}

Formula

a(n) ~ n^(n-1) * (1 + exp(-1)/n + (3*exp(-1)/2 + 2*exp(-2))/n^2). - Vaclav Kotesovec, Aug 17 2015

A294948 Expansion of Product_{n>=1} (1 - n^n*x^n)^(1/n).

Original entry on oeis.org

1, -1, -2, -7, -57, -541, -7126, -108072, -1966034, -40620681, -952305757, -24824933859, -714742428220, -22491627743504, -768696164146118, -28344822040761041, -1121925480573229737, -47442205907345238412, -2134679753840086267669
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/n, g(n) = n^n.

Crossrefs

Column k=0 of A294947.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k^k*x^k)^(1/k)))

Formula

G.f.: exp(-Sum_{k>0} A023887(k)*x^k/k).
a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A023887(k)*a(n-k) for n > 0.

A156360 G.f.: A(x) = exp( Sum_{n>=1} sigma_n(2n)*x^n/n ), where sigma_n(2n) is the sum of the n-th powers of the divisors of 2*n.

Original entry on oeis.org

1, 3, 15, 120, 1450, 25383, 591563, 17156364, 595635903, 24023004840, 1102221504614, 56652798990909, 3222918574782830, 200989079661549750, 13632214370613131094, 998992560620311541814, 78653794343072884416393
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 120*x^3 + 1450*x^4 + 25383*x^5 +...
log(A(x)) = 3*x + 21*x^2/2 + 252*x^3/3 + 4369*x^4/4 + 103158*x^5/5 +...
sigma(2n,n) = [3,21,252,4369,103158,3037530,106237176,4311810305,...].
		

Crossrefs

Cf. variant: A023881 (number of partitions in expanding space).
Cf. A179504.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,sigma(2*k,k)*x^k/k,x*O(x^n))),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(2*k,k)*a(n-k)))}

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(2*k,k)*a(n-k) for n>0, with a(0) = 1.
a(n) ~ 2^n * n^(n-1). - Vaclav Kotesovec, Oct 31 2024

A294946 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(Sum_{j>0} sigma_k(j)*x^j/j) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 12, 1, 1, 9, 32, 82, 1, 1, 17, 90, 304, 725, 1, 1, 33, 260, 1162, 3537, 8811, 1, 1, 65, 762, 4516, 17435, 52010, 128340, 1, 1, 129, 2252, 17722, 86529, 310193, 895397, 2257687, 1, 1, 257, 6690, 69964, 431675, 1865766, 6286826, 18016416, 45658174
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2017

Keywords

Examples

			Square array begins:
     1,    1,     1,     1,      1, ...
     1,    1,     1,     1,      1, ...
     3,    5,     9,    17,     33, ...
    12,   32,    90,   260,    762, ...
    82,  304,  1162,  4516,  17722, ...
   725, 3537, 17435, 86529, 431675, ...
		

Crossrefs

Columns k=0..2 give A023881, A023882, A294813.
Rows n=0+1, 2 give A000012, A000051(n+1).

Formula

G.f. of column k: Product_{j>0} 1/(1 - j^j*x^j)^(j^(k-1)).
Showing 1-10 of 16 results. Next