A158952
Inverse Euler transform of the number of partitions in expanding space (A023881).
Original entry on oeis.org
1, 2, 9, 67, 625, 7903, 117649, 2105342, 43048905, 1000976352, 25937424601, 743191207969, 23298085122481, 793763217701693, 29192928060852217, 1152939097060278256, 48661191875666868481, 2185919903971766191000
Offset: 1
Let G(x) = Sum_{n>=0} A023881(n)*x^n then
G(x) = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 725*x^5 + 8811*x^6 +...
G(x) = 1/[(1-x)*(1-x^2)^2*(1-x^3)^9*(1-x^4)^67*(1-x^5)^625*...].
-
Table[Sum[DivisorSigma[d, d]*MoebiusMu[n/d], {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Oct 09 2019 *)
-
{a(n)=(1/n)*sumdiv(n,d,sigma(d,d)*moebius(n/d))}
A023887
a(n) = sigma_n(n): sum of n-th powers of divisors of n.
Original entry on oeis.org
1, 5, 28, 273, 3126, 47450, 823544, 16843009, 387440173, 10009766650, 285311670612, 8918294543346, 302875106592254, 11112685048647250, 437893920912786408, 18447025552981295105, 827240261886336764178, 39346558271492178925595, 1978419655660313589123980
Offset: 1
The divisors of 6 are 1, 2, 3 and 6, so a(6) = 1^6 + 2^6 + 3^6 + 6^6 = 47450.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
-
A023887 := proc(n)
numtheory[sigma][n](n) ;
end proc:
seq(A023887(n),n=1..10) ; # R. J. Mathar, Apr 06 2022
-
Table[DivisorSigma[n,n],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)
-
makelist(divsum(n,n),n,1,20); /* Emanuele Munarini, Mar 26 2011 */
-
a(n) = sigma(n,n); \\ Nick Hobson, Nov 25 2006
-
from sympy import divisor_sigma
def A023887(n): return divisor_sigma(n,n) # Chai Wah Wu, Jun 19 2022
A205814
G.f.: Product_{n>=1} [ (1 - 2^n*x^n) / (1 - (n+2)^n*x^n) ]^(1/n).
Original entry on oeis.org
1, 1, 9, 54, 482, 4239, 55561, 785554, 14133055, 285547760, 6666380256, 172748192767, 4974178683908, 156462697434990, 5354832107694444, 197710292330150160, 7839473395324929677, 332071887435037103895, 14968498613432649146050, 715294449027151380463781
Offset: 0
G.f.: A(x) = 1 + x + 9*x^2 + 54*x^3 + 482*x^4 + 4239*x^5 + 55561*x^6 +...
where the g.f. equals the product:
A(x) = (1-2*x)/(1-3*x) * ((1-2^2*x^2)/(1-4^2*x^2))^(1/2) * ((1-2^3*x^3)/(1-5^3*x^3))^(1/3) * ((1-2^4*x^4)/(1-6^4*x^4))^(1/4) * ((1-2^5*x^5)/(1-7^5*x^5))^(1/5) *...
The logarithm equals the l.g.f. of A205815:
log(A(x)) = x + 17*x^2/2 + 136*x^3/3 + 1585*x^4/4 + 16986*x^5/5 +...
-
{a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=1, m, binomial(m, k)*sigma(m, k)*2^(m-k))+x*O(x^n))), n)}
-
{a(n)=polcoeff(prod(k=1, n, ((1-2^k*x^k)/(1-(k+2)^k*x^k +x*O(x^n)))^(1/k)), n)}
A186633
G.f.: Product_{n>=1} (1 + n^n*x^n)^(1/n).
Original entry on oeis.org
1, 1, 2, 11, 71, 705, 8470, 127284, 2231342, 45505041, 1048341387, 27059612615, 771505041184, 24109351520196, 818862556900962, 30044548635160841, 1184027932446520895, 49883835880381353808, 2237276988838875420087
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 71*x^4 + 705*x^5 +...
A(x) = (1 + x) *(1 + 4*x^2)^(1/2) *(1 + 27*x^3)^(1/3) *(1 + 256*x^4)^(1/4) *...
-
{a(n)=if(n<0, 0, polcoeff(prod(k=1, n, (1+k^k*x^k+x*O(x^n))^(1/k)), n))}
A205811
G.f.: Product_{n>=1} [ (1 - x^n) / (1 - (n+1)^n*x^n) ]^(1/n).
Original entry on oeis.org
1, 1, 6, 29, 221, 1897, 23502, 335334, 5923570, 119354491, 2758647259, 71079498533, 2031108928680, 63520842121792, 2161164726505952, 79394066773371245, 3133259427956392983, 132166451829847198316, 5934636812034634649249, 282609413111134846839482
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 29*x^3 + 221*x^4 + 1897*x^5 + 23502*x^6 +...
where the g.f. equals the product:
A(x) = (1-x)/(1-2*x) * ((1-x^2)/(1-3^2*x^2))^(1/2) * ((1-x^3)/(1-4^3*x^3))^(1/3) * ((1-x^4)/(1-5^4*x^4))^(1/4) * ((1-x^5)/(1-6^5*x^5))^(1/5) *...
The logarithm equals the l.g.f. of A205812:
log(A(x)) = x + 11*x^2/2 + 70*x^3/3 + 719*x^4/4 + 7806*x^5/5 + 122534*x^6/6 +...
-
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=1,m,binomial(m,k)*sigma(m,k))+x*O(x^n))),n)}
-
{a(n)=polcoeff(prod(k=1,n,((1-x^k)/(1-(k+1)^k*x^k +x*O(x^n)))^(1/k)),n)}
A158095
G.f.: A(x) = exp( Sum_{n>=1} 2*sigma(n,n-1)*x^n/n ).
Original entry on oeis.org
1, 2, 5, 14, 61, 370, 3454, 40880, 614346, 10848514, 222870183, 5175100204, 134514302384, 3859406052466, 121274242936381, 4139268759072626, 152532132931199062, 6034430112251517608, 255114747410233804986
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 61*x^4 + 370*x^5 +...
-
a(n)=polcoeff(exp(sum(m=1,n,2*sigma(m,m-1)*x^m/m)+x*O(x^n)),n)
A163203
G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d^n] * x^n/n ).
Original entry on oeis.org
1, 1, 2, 11, 79, 713, 8486, 127372, 2248390, 45527161, 1048442107, 27060812167, 771886991408, 24110090108332, 818871809076474, 30044771201925569, 1184069354974499199, 49884064948928968400, 2237283630465903060711
Offset: 0
G.f.: 1 + x + 2*x^2 + 11*x^3 + 79*x^4 + 713*x^5 + 8486*x^6 +...
-
{a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, (-1)^(m-d)*d^m)*x^m/m)+x*O(x^n)), n)}
A294948
Expansion of Product_{n>=1} (1 - n^n*x^n)^(1/n).
Original entry on oeis.org
1, -1, -2, -7, -57, -541, -7126, -108072, -1966034, -40620681, -952305757, -24824933859, -714742428220, -22491627743504, -768696164146118, -28344822040761041, -1121925480573229737, -47442205907345238412, -2134679753840086267669
Offset: 0
A156360
G.f.: A(x) = exp( Sum_{n>=1} sigma_n(2n)*x^n/n ), where sigma_n(2n) is the sum of the n-th powers of the divisors of 2*n.
Original entry on oeis.org
1, 3, 15, 120, 1450, 25383, 591563, 17156364, 595635903, 24023004840, 1102221504614, 56652798990909, 3222918574782830, 200989079661549750, 13632214370613131094, 998992560620311541814, 78653794343072884416393
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 120*x^3 + 1450*x^4 + 25383*x^5 +...
log(A(x)) = 3*x + 21*x^2/2 + 252*x^3/3 + 4369*x^4/4 + 103158*x^5/5 +...
sigma(2n,n) = [3,21,252,4369,103158,3037530,106237176,4311810305,...].
Cf. variant:
A023881 (number of partitions in expanding space).
-
{a(n)=polcoeff(exp(sum(k=1,n,sigma(2*k,k)*x^k/k,x*O(x^n))),n)}
-
{a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(2*k,k)*a(n-k)))}
A294946
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(Sum_{j>0} sigma_k(j)*x^j/j) in powers of x.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 5, 12, 1, 1, 9, 32, 82, 1, 1, 17, 90, 304, 725, 1, 1, 33, 260, 1162, 3537, 8811, 1, 1, 65, 762, 4516, 17435, 52010, 128340, 1, 1, 129, 2252, 17722, 86529, 310193, 895397, 2257687, 1, 1, 257, 6690, 69964, 431675, 1865766, 6286826, 18016416, 45658174
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, ...
12, 32, 90, 260, 762, ...
82, 304, 1162, 4516, 17722, ...
725, 3537, 17435, 86529, 431675, ...
Showing 1-10 of 16 results.
Comments