Emanuele Munarini has authored 305 sequences. Here are the ten most recent ones:
A374585
A family of marked Motzkin-like paths.
Original entry on oeis.org
1, 1, 1, 1, 3, 9, 21, 41, 79, 169, 393, 913, 2051, 4537, 10165, 23257, 53759, 124153, 286009, 660161, 1531875, 3571753, 8348981, 19539209, 45792719, 107546633, 253153609, 597034609, 1410131683, 3334984025, 7897992213, 18730123449, 44476842431, 105740699609, 251664629689
Offset: 0
-
CoefficientList[Series[((1-t)^2-Sqrt[1-4t+6t^2-4t^3-7t^4+8t^5])/(4t^4),{t,0,100}],t]
Table[Sum[Binomial[n-k,3k] 2^k CatalanNumber[k], {k,0,n/4}], {n,0,100}]
A296660
Expansion of the e.g.f. exp(-2*x)/(1-4*x).
Original entry on oeis.org
1, 2, 20, 232, 3728, 74528, 1788736, 50084480, 1602703616, 57697329664, 2307893187584, 101547300251648, 4874270412083200, 253462061428318208, 14193875439985836032, 851632526399150129152, 54504481689545608331264, 3706304754889101366394880
Offset: 0
-
CoefficientList[Series[Exp[-2x]/(1-4x),{x,0,12}],x]Range[0,12]!
Table[Sum[Binomial[n, k] 4^k k! (-2)^(n-k), {k, 0, n}], {n, 0, 12}]
-
makelist(sum(binomial(n,k)*4^k*k!*(-2)^(n-k),k,0,n),n,0,12);
-
x='x+O('x^99); Vec(serlaplace(exp(-2*x)/(1-4*x))) \\ Altug Alkan, Dec 18 2017
A296618
Expansion of the e.g.f. exp(-x)/sqrt(1-4*x).
Original entry on oeis.org
1, 1, 9, 89, 1265, 22929, 506809, 13220521, 397585761, 13543386785, 515418398441, 21673889807481, 998003450868049, 49942515803293489, 2698849517019693465, 156631203355106962889, 9716434375682706344129, 641592631434102757993281
Offset: 0
-
A296618 := n -> (-1)^n*(I/2)*KummerU(1/2, n+3/2, -1/4):
seq(simplify(A296618(n)), n=0..17); # Peter Luschny, Dec 18 2017
-
Table[Sum[Binomial[n,k]Binomial[2k,k]k! (-1)^(n-k),{k,0,n}],{n,0,18}]
CoefficientList[Series[Exp[-x]/Sqrt[1-4x], {x,0,18}], x] Range[0,18]!
-
makelist(sum(binomial(n,k)*binomial(2*k,k)*k!*(-1)^(n-k),k,0,n),n,0,12);
-
x='x+O('x^99); Vec(serlaplace(exp(-x)/sqrt(1-4*x))) \\ Altug Alkan, Dec 17 2017
A230053
Recurrence a(n+2) = (n+2)*a(n+1)*a(n), with a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 2, 6, 48, 1440, 414720, 4180377600, 13869489586176000, 521817332305350780518400000, 72373400562952038729626622187536384000000000, 415422642927888257689749131592471020852730170822782196121600000000000000
Offset: 0
-
f:= proc(n) option remember; n*procname(n-1)*procname(n-2) end proc:
f(0):= 1: f(1):= 1:
map(f, [$0..12]); # Robert Israel, Oct 08 2017
-
RecurrenceTable[{a[n + 2] == (n + 2) a[n + 1] a[n], a[0] == a[1] == 1}, a, {n, 0, 12}] (* or *)
Table[Product[(n - k + 1)^Fibonacci[k], {k, 0, n - 1}], {n, 0, 12}]
A284604
Quadratic recurrence: a(n+2) = a(n+1)^2 + a(n)^2 + 1, with a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 3, 11, 131, 17283, 298719251, 89233191216703091, 7962562414716697755180182566955283, 63402400208259008611705446682872670539115181497111590988296570564371
Offset: 0
-
[n le 2 select 1 else Self(n-1)^2+Self(n-2)^2+1: n in [1..10]]; // Bruno Berselli, Mar 30 2017
-
RecurrenceTable[{a[n + 2] == a[n + 1]^2 + a[n]^2 + 1, a[0] == 1, a[1] == 1}, a, {n, 0, 12}]
nxt[{a_,b_}]:={b,a^2+b^2+1}; NestList[nxt,{1,1},10][[;;,1]] (* Harvey P. Dale, Feb 16 2025 *)
-
a(n) := if (n=0 or n=1) then 1 else a(n-1)^2 + a(n-2)^2 + 1; makelist(a(n), n, 0, 12);
A276536
Binomial sums of the cubes of the central binomial coefficients.
Original entry on oeis.org
1, 9, 233, 8673, 376329, 17800209, 890215361, 46294813497, 2478150328777, 135642353562321, 7556884938829233, 427106589765940137, 24429206859151618209, 1411391470651692285609, 82245902444586364980057, 4828398428680134702936273
Offset: 0
Cf. Sum_{k = 0..n} binomial(n, k)*binomial(2*k, k)^m:
A026375 (m=1),
A248586 (m=2), this sequence (m=3).
-
[&+[Binomial(n, k)*Binomial(2*k, k)^3: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 30 2016
-
Table[Sum[Binomial[n, k]Binomial[2k, k]^3, {k, 0, n}], {n, 0, 100}]
-
makelist(sum(binomial(n,k)*binomial(2*k,k)^3,k,0,n),n,0,12);
A276537
Alternating binomial sums of the cubes of the central binomial coefficients.
Original entry on oeis.org
1, 7, 201, 7375, 312265, 14365887, 697859169, 35226348087, 1829569294665, 97138289500735, 5248514415816721, 287657066913117447, 15953440327189548001, 893653778439275931175, 50488236061157830951545, 2873526763346873838886815
Offset: 0
Similar sums of m-powers of the central binomial coefficients:
A002426 (m=1),
A278934 (m=2), this sequence (m=3).
-
[&+[(-1)^(n-k)*Binomial(n,k)*Binomial(2*k,k)^3: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 03 2016
-
Table[Sum[Binomial[n,k]Binomial[2k,k]^3(-1)^(n-k),{k,0,n}],{n,0,100}]
-
makelist(sum(binomial(n,k)*binomial(2*k,k)^3*(-1)^(n-k),k,0,n),n,0,12);
A275822
Alternating sums of the cubes of the central binomial coefficients.
Original entry on oeis.org
1, 7, 209, 7791, 335209, 15667799, 773221225, 39651016343, 2092095886657, 112840936041343, 6193764391911873, 344853399798469695, 19429178297906958721, 1105629520934309041279, 63455683531507986958721, 3668895994183490904049279
Offset: 0
-
L:= [seq((-1)^k*binomial(2*k,k)^3,k=0..20)]:
B:= ListTools:-PartialSums(L):
seq((-1)^(k+1)*B[k],k=1..nops(B)); # Robert Israel, Nov 21 2016
-
Table[Sum[Binomial[2 k, k]^3 (-1)^(n - k), {k, 0, n}], {n, 0, 20}]
Table[Sum[(-1)^(n - k) (k + 1)^3 CatalanNumber[k]^3, {k, 0, n}], {n, 0, 20}] (* Jan Mangaldan, Jul 07 2020 *)
-
makelist(sum(binomial(2*k,k)^3*(-1)^(n-k),k,0,n),n,0,12);
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k,k)^3); \\ Michel Marcus, Jul 07 2020
A277638
Binomial partial sums of sequence A007004.
Original entry on oeis.org
1, 4, 37, 520, 8803, 165292, 3320023, 69943804, 1526981575, 34271322316, 786371041603, 18372739163632, 435772652437381, 10468369504009060, 254238148448959729, 6233226769739934964, 154092763036678601551, 3837301178450916902428, 96181503100227675085675
Offset: 0
-
Table[Sum[Binomial[n, k] Multinomial[k, k, k]/(k+1), {k, 0, n}], {n, 0, 100}]
-
makelist(sum(binomial(n, k)*multinomial_coeff(k, k, k)/(k+1), k, 0, n), n, 0, 12);
A277639
Double binomial partial sums of A007004.
Original entry on oeis.org
1, 4, 43, 718, 14779, 344452, 8725093, 234594766, 6596287411, 192032529388, 5747827847545, 175986201591130, 5490952102178725, 174077883157001740, 5594651323154783515, 181946073109880839450, 5978730547304013537475, 198263347772478727193740, 6628299876919271425393105, 223211734849614639629628010, 7566093949269408444819804937
Offset: 0
-
Table[Sum[Binomial[n, k]^2 Multinomial[k,k,k]/(k+1), {k,0,n}], {n,0,100}]
-
makelist(sum(binomial(n,k)^2*multinomial_coeff(k,k,k)/(k+1),k,0,n),n,0,12);
Comments