cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Emanuele Munarini

Emanuele Munarini's wiki page.

Emanuele Munarini has authored 305 sequences. Here are the ten most recent ones:

A374585 A family of marked Motzkin-like paths.

Original entry on oeis.org

1, 1, 1, 1, 3, 9, 21, 41, 79, 169, 393, 913, 2051, 4537, 10165, 23257, 53759, 124153, 286009, 660161, 1531875, 3571753, 8348981, 19539209, 45792719, 107546633, 253153609, 597034609, 1410131683, 3334984025, 7897992213, 18730123449, 44476842431, 105740699609, 251664629689
Offset: 0

Author

Emanuele Munarini, Jul 12 2024

Keywords

Comments

Number of lattice paths from (0,0) to (n,0) that stay weakly in the first quadrant and such that each step is either H=(1,0), U=(2,1) or D=(2,-1), where the steps H and D can be marked H*, D*, so that (in the canonical decomposition) a marked step H* cannot be followed by the empty path or by H. For instance, a(5)=9 because we have HHHHH, HUD, HUD*, H*UD, H*UD*, UDH, UD*H, UHD and UHD*.

Crossrefs

Cf. A023426.

Programs

  • Mathematica
    CoefficientList[Series[((1-t)^2-Sqrt[1-4t+6t^2-4t^3-7t^4+8t^5])/(4t^4),{t,0,100}],t]
    Table[Sum[Binomial[n-k,3k] 2^k CatalanNumber[k], {k,0,n/4}], {n,0,100}]

Formula

G.f: A(t) = ((1-t)^2-sqrt(1-4*t+6*t^2-4*t^3-7*t^4+8*t^5))/(4*t^4).
G.f. A(x) satisfies: A(t) = 1+t*A(t)+t*(A(t)-1-t*A(t))+2*t^4*A(t)^2, or 2*t^4*A(t)^2-(1-t)^2*A(t)+1-t = 0.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k,3*k)*2^k*Catalan(k).
Recurrence: a(n+4) = 2*a(n+3) - a(n+2) + 2*Sum_{k=0..n} a(k)*a(n-k).
D-finite with recurrence: (n+9)*a(n+5) -2*(2*n+15)*a(n+4) +6*(n+6)*a(n+3) -2*(2*n+9)*a(n+2) -7*(n+3)*a(n+1) +4*(2*n+3)*a(n)=0.
a(n) ~ (1/2)*sqrt((4-X)/(2*Pi))*X^(-n-2)/n^(3/2),
where X = 0.40355658567370456... is the unique positive real root of 8*x^3-7*x^2+4*x-1.

A296660 Expansion of the e.g.f. exp(-2*x)/(1-4*x).

Original entry on oeis.org

1, 2, 20, 232, 3728, 74528, 1788736, 50084480, 1602703616, 57697329664, 2307893187584, 101547300251648, 4874270412083200, 253462061428318208, 14193875439985836032, 851632526399150129152, 54504481689545608331264, 3706304754889101366394880
Offset: 0

Author

Emanuele Munarini, Dec 18 2017

Keywords

Comments

Binomial self-convolution of sequence A296618.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[-2x]/(1-4x),{x,0,12}],x]Range[0,12]!
    Table[Sum[Binomial[n, k] 4^k k! (-2)^(n-k), {k, 0, n}], {n, 0, 12}]
  • Maxima
    makelist(sum(binomial(n,k)*4^k*k!*(-2)^(n-k),k,0,n),n,0,12);
    
  • PARI
    x='x+O('x^99); Vec(serlaplace(exp(-2*x)/(1-4*x))) \\ Altug Alkan, Dec 18 2017

Formula

E.g.f.: exp(-2*x)/(1-4*x).
a(n) = Sum_{k=0..n} binomial(n,k)*4^k*k!*(-2)^(n-k).
Sum_{k=0..n} binomial(n,k)*2^(n-k)*a(k) = 4^n n!.
a(n+1)-4*(n+1)*a(n) = (-2)^(n+1).
D-finite with recurrence a(n+2)-(4*n+6)*a(n+1)-8*(n+1)*a(n) = 0.
From Vaclav Kotesovec, Dec 18 2017: (Start)
a(n) = exp(-1/2) * 4^n * Gamma(n + 1, -1/2).
a(n) ~ n! * exp(-1/2) * 4^n. (End)

A296618 Expansion of the e.g.f. exp(-x)/sqrt(1-4*x).

Original entry on oeis.org

1, 1, 9, 89, 1265, 22929, 506809, 13220521, 397585761, 13543386785, 515418398441, 21673889807481, 998003450868049, 49942515803293489, 2698849517019693465, 156631203355106962889, 9716434375682706344129, 641592631434102757993281
Offset: 0

Author

Emanuele Munarini, Dec 17 2017

Keywords

Crossrefs

Cf. A052143.

Programs

  • Maple
    A296618 := n -> (-1)^n*(I/2)*KummerU(1/2, n+3/2, -1/4):
    seq(simplify(A296618(n)), n=0..17); # Peter Luschny, Dec 18 2017
  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[2k,k]k! (-1)^(n-k),{k,0,n}],{n,0,18}]
    CoefficientList[Series[Exp[-x]/Sqrt[1-4x], {x,0,18}], x] Range[0,18]!
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*k,k)*k!*(-1)^(n-k),k,0,n),n,0,12);
    
  • PARI
    x='x+O('x^99); Vec(serlaplace(exp(-x)/sqrt(1-4*x))) \\ Altug Alkan, Dec 17 2017

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)*k!*(-1)^(n-k).
a(n) = (i/2)*(-1)^n*U(1/2,n+3/2,-1/4), where U denotes the Kummer U function.
D-finite with recurrence: a(n+2) - (4*n+5)*a(n+1) - 4*(n+1)*a(n) = 0.
Sum_{k=0..n} binomial(n,k)*a(k)*a(n-k) = Sum_{k=0..n} binomial(n,k)*(-1)^(n-k)*2^(n+k)*k!.
Conjectures:
1) a(n+1) == a(n) (mod n) for all n >= 1.
2) a(n+k) == (-1)^k*a(n) (mod k) for all n and k >= 1.
a(n) ~ 2^(2*n + 1/2) * n^n / exp(n + 1/4). - Vaclav Kotesovec, Dec 17 2017
From Peter Bala, Jun 19 2023: (Start)
a(n) == 1 (mod 4).
Conjecture 1) above follows immediately from the stated recurrence equation. In fact, a(n+1) == a(n) (mod 8*n) for n >= 1.
For a proof of Conjecture 2) see the Bala link (corollary to Theorem 1, p. 5). (End)

A230053 Recurrence a(n+2) = (n+2)*a(n+1)*a(n), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 6, 48, 1440, 414720, 4180377600, 13869489586176000, 521817332305350780518400000, 72373400562952038729626622187536384000000000, 415422642927888257689749131592471020852730170822782196121600000000000000
Offset: 0

Author

Emanuele Munarini, Oct 08 2017

Keywords

Comments

Numbers of decimal digits in a(n) for 0 <= n <= 20: 1, 1, 1, 1, 2, 4, 6, 10, 17, 27, 44, 72, 117, 190, 307, 498, 806, 1305, 2112, 3417, 5530. - Robert Israel, Oct 09 2017

Crossrefs

Cf. A000045.

Programs

  • Maple
    f:= proc(n) option remember; n*procname(n-1)*procname(n-2) end proc:
    f(0):= 1: f(1):= 1:
    map(f, [$0..12]); # Robert Israel, Oct 08 2017
  • Mathematica
    RecurrenceTable[{a[n + 2] == (n + 2) a[n + 1] a[n], a[0] == a[1] == 1}, a, {n, 0, 12}] (* or *)
    Table[Product[(n - k + 1)^Fibonacci[k], {k, 0, n - 1}], {n, 0, 12}]

Formula

a(n) = Product_{k=0..n-1} (n-k+1)^Fibonacci(k).
a(n) ~ c^(phi^n) / n, where c = exp(Sum_{k>=1} log(k+1) / (sqrt(5)*phi^k) ) = 2.32072822997682611701924627353608916645018... and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 05 2021, updated Mar 16 2025

A284604 Quadratic recurrence: a(n+2) = a(n+1)^2 + a(n)^2 + 1, with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 11, 131, 17283, 298719251, 89233191216703091, 7962562414716697755180182566955283, 63402400208259008611705446682872670539115181497111590988296570564371
Offset: 0

Author

Emanuele Munarini, Mar 30 2017

Keywords

Crossrefs

Cf. A000283.

Programs

  • Magma
    [n le 2 select 1 else Self(n-1)^2+Self(n-2)^2+1: n in [1..10]]; // Bruno Berselli, Mar 30 2017
  • Mathematica
    RecurrenceTable[{a[n + 2] == a[n + 1]^2 + a[n]^2 + 1, a[0] == 1, a[1] == 1}, a, {n, 0, 12}]
    nxt[{a_,b_}]:={b,a^2+b^2+1}; NestList[nxt,{1,1},10][[;;,1]] (* Harvey P. Dale, Feb 16 2025 *)
  • Maxima
    a(n) := if (n=0 or n=1) then 1 else a(n-1)^2 + a(n-2)^2 + 1; makelist(a(n), n, 0, 12);
    

Formula

a(n+3) = a(n+2)^2 + a(n+2) - a(n)^2, with a(0) = a(1) = 1, a(2) = 3.
a(n) ~ c^(2^n), where c = 1.356519333072951374233963037913978335267300244021120535099185060013... - Vaclav Kotesovec, Apr 15 2017

A276536 Binomial sums of the cubes of the central binomial coefficients.

Original entry on oeis.org

1, 9, 233, 8673, 376329, 17800209, 890215361, 46294813497, 2478150328777, 135642353562321, 7556884938829233, 427106589765940137, 24429206859151618209, 1411391470651692285609, 82245902444586364980057, 4828398428680134702936273
Offset: 0

Author

Emanuele Munarini, Nov 16 2016

Keywords

Crossrefs

Cf. Sum_{k = 0..n} binomial(n, k)*binomial(2*k, k)^m: A026375 (m=1), A248586 (m=2), this sequence (m=3).

Programs

  • Magma
    [&+[Binomial(n, k)*Binomial(2*k, k)^3: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 30 2016
  • Mathematica
    Table[Sum[Binomial[n, k]Binomial[2k, k]^3, {k, 0, n}], {n, 0, 100}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*k,k)^3,k,0,n),n,0,12);
    

Formula

a(n) = Sum_{k = 0..n} binomial(n, k)*binomial(2*k, k)^3.
Recurrence: (n^3 + 12n^2 + 48n + 64) * a(n+4) - (68n^3 + 714n^2 + 2500n + 2919) * a(n+3) + (198n^3 + 1782n^2 + 5363n + 5397) * a(n+2) - 98 * (2n^3 + 15n^2 + 37n + 30) * a(n+1) + 65 * (n^3 + 6n^2 + 11n + 6) * a(n) = 0.
G.f.: (4/Pi^2) * K(1/2 - 1/2 * sqrt((1-65*t)/(1-t)))^2 / (1-t), where K(x) is complete elliptic integral of the first kind (defined as in MathWorld or in The Wolfram Functions Site).
a(n) ~ 65^(n+3/2) / (512 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Nov 16 2016
a(n) = 4F3(1/2,1/2,1/2,-n; 1,1,1; -64). - Ilya Gutkovskiy, Nov 25 2016

A276537 Alternating binomial sums of the cubes of the central binomial coefficients.

Original entry on oeis.org

1, 7, 201, 7375, 312265, 14365887, 697859169, 35226348087, 1829569294665, 97138289500735, 5248514415816721, 287657066913117447, 15953440327189548001, 893653778439275931175, 50488236061157830951545, 2873526763346873838886815
Offset: 0

Author

Emanuele Munarini, Nov 16 2016

Keywords

Crossrefs

Cf. A276536.
Similar sums of m-powers of the central binomial coefficients: A002426 (m=1), A278934 (m=2), this sequence (m=3).

Programs

  • Magma
    [&+[(-1)^(n-k)*Binomial(n,k)*Binomial(2*k,k)^3: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 03 2016
  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[2k,k]^3(-1)^(n-k),{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*k,k)^3*(-1)^(n-k),k,0,n),n,0,12);
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*binomial(2*k,k)^3.
Recurrence: (n^3+12*n^2+48*n+64)*a(n+4)-(60*n^3+630*n^2+2204*n+2569)*a(n+3)-(186*n^3+1674*n^2+5037*n+5067)*a(n+2)-94*(2*n^3+15*n^2+37*n+30)*a(n+1)-63*(n^3+6*n^2+11*n+6)*a(n)=0.
G.f.: (4/Pi^2)*K(1/2-1/2*sqrt((1-63*t)/(1+t)))^2/(1+t), where K(x) is the complete elliptic integral of the first kind (defined as in MathWorld or in The Wolfram Functions Site).
a(n) ~ 3^(2*n+3) * 7^(n+3/2) / (512 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Nov 16 2016
a(n) = (-1)^n*4F3(1/2,1/2,1/2,-n; 1,1,1; 64). - Ilya Gutkovskiy, Nov 25 2016

A275822 Alternating sums of the cubes of the central binomial coefficients.

Original entry on oeis.org

1, 7, 209, 7791, 335209, 15667799, 773221225, 39651016343, 2092095886657, 112840936041343, 6193764391911873, 344853399798469695, 19429178297906958721, 1105629520934309041279, 63455683531507986958721, 3668895994183490904049279
Offset: 0

Author

Emanuele Munarini, Nov 15 2016

Keywords

Crossrefs

Cf. A079727.

Programs

  • Maple
    L:= [seq((-1)^k*binomial(2*k,k)^3,k=0..20)]:
    B:= ListTools:-PartialSums(L):
    seq((-1)^(k+1)*B[k],k=1..nops(B)); # Robert Israel, Nov 21 2016
  • Mathematica
    Table[Sum[Binomial[2 k, k]^3 (-1)^(n - k), {k, 0, n}], {n, 0, 20}]
    Table[Sum[(-1)^(n - k) (k + 1)^3 CatalanNumber[k]^3, {k, 0, n}], {n, 0, 20}] (* Jan Mangaldan, Jul 07 2020 *)
  • Maxima
    makelist(sum(binomial(2*k,k)^3*(-1)^(n-k),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k,k)^3); \\ Michel Marcus, Jul 07 2020

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2*k,k)^3.
Recurrence: (n+2)^3*a(n+2)-(3*n+4)*(21*n^2+66*n+52)*a(n+1)-8*(2n+3)^3*a(n)=0.
G.f.: (4/Pi^2)*K((1-sqrt(1-64*t))/2)^2/(1+t), where K(x) is complete elliptic integral of the first kind (defined as in The Wolfram Functions Site).
a(n) ~ 2^(6*n+6) / (65*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 16 2016

A277638 Binomial partial sums of sequence A007004.

Original entry on oeis.org

1, 4, 37, 520, 8803, 165292, 3320023, 69943804, 1526981575, 34271322316, 786371041603, 18372739163632, 435772652437381, 10468369504009060, 254238148448959729, 6233226769739934964, 154092763036678601551, 3837301178450916902428, 96181503100227675085675
Offset: 0

Author

Emanuele Munarini, Oct 25 2016

Keywords

Crossrefs

Cf. A007004.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Multinomial[k, k, k]/(k+1), {k, 0, n}], {n, 0, 100}]
  • Maxima
    makelist(sum(binomial(n, k)*multinomial_coeff(k, k, k)/(k+1), k, 0, n), n, 0, 12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * multinomial(k,k,k)/(k+1).
a(n) = hypergeometric(1/3,2/3,-n; 1,2; -27).
a(n) == 1 (mod 3) for all natural n.
E.g.f.: exp(t) * hypergeometric(1/3,2/3; 1,2; 27*t).
From Vaclav Kotesovec, Oct 26 2016: (Start)
Recurrence: n*(n+1)*a(n) = 2*(3*n-1)*(5*n-3)*a(n-1) - (n-1)*(57*n-56)*a(n-2) + 28*(n-2)*(n-1)*a(n-3).
a(n) ~ 2^(2*n+3) * 7^(n+2) / (3^(11/2) * Pi * n^2).
(End)
Diff. eq. satisfied by the ordinary g.f.: t*(1-t)^2*(1-28*t)*A''(t)+2*(1-t)*(1-2*t)*(1-28*t)*A'(t)-2*(4-29*t+28*t^2)*A(t)=0. - Emanuele Munarini, Oct 28 2016
G.f.: hypergeom([1/3, 2/3],[2],27*x/(1-x))/(1-x). - Mark van Hoeij, Nov 28 2024

A277639 Double binomial partial sums of A007004.

Original entry on oeis.org

1, 4, 43, 718, 14779, 344452, 8725093, 234594766, 6596287411, 192032529388, 5747827847545, 175986201591130, 5490952102178725, 174077883157001740, 5594651323154783515, 181946073109880839450, 5978730547304013537475, 198263347772478727193740, 6628299876919271425393105, 223211734849614639629628010, 7566093949269408444819804937
Offset: 0

Author

Emanuele Munarini, Oct 25 2016

Keywords

Crossrefs

Cf. A007004.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2 Multinomial[k,k,k]/(k+1), {k,0,n}], {n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)^2*multinomial_coeff(k,k,k)/(k+1),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2*multinomial(k,k,k)/(k+1).
a(n) = hypergeometric(1/3,2/3,-n,-n;1,1,2;27).
Double e.g.f.: BesselI(0,2*sqrt(t))*hypergeometric(1/3,2/3;1,1,2;27*t).
D-finite with recurrence: n^2*(n+1)^2*(1058*n^4 - 7061*n^3 + 16158*n^2 - 14048*n + 3284)*a(n) = 2*n*(30682*n^7 - 219052*n^6 + 555798*n^5 - 545060*n^4 + 16565*n^3 + 323730*n^2 - 206943*n + 39408)*a(n-1) - (834762*n^8 - 7954803*n^7 + 30596846*n^6 - 59518007*n^5 + 57023894*n^4 - 13636388*n^3 - 20674168*n^2 + 16952656*n - 3600432)*a(n-2) + 2*(n-2)^2*(744832*n^6 - 5313736*n^5 + 13458434*n^4 - 12947434*n^3 - 64535*n^2 + 6504872*n - 2110473)*a(n-3) - 676*(n-3)^2*(n-2)^2*(1058*n^4 - 2829*n^3 + 1323*n^2 + 1317*n - 609)*a(n-4). - Vaclav Kotesovec, Oct 30 2016
a(n) ~ sqrt(205/162 + 1939/(729*sqrt(3))) * (28+6*sqrt(3))^n / (Pi^(3/2)*n^(5/2)). - Vaclav Kotesovec, Oct 30 2016