A336061 Numerators of coefficients associated with the second virial coefficient for rigid spheres with imbedded point dipoles.
1, 1, 29, 11, 13, 17, 523, 31, 66197, 83651, 21253, 3660541, 520783, 668861, 3322147, 30013913, 12938197, 4073039057, 310878307, 6867070733, 668207557, 104732138813, 56875471, 253267848881, 6285904022089, 913083596083, 2612577367192619, 3420422655984353
Offset: 1
Examples
1/3, 1/75, 29/55125, 11/694575, 13/36018675, 17/2678348673, 523/5934977173125, ...
References
- J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., 1964, pages 210-211.
Programs
-
Mathematica
Table[Numerator[4^k Sum[Binomial[2 j, j]/Binomial[2 k, k], {j, 0, k}]/((2 k)! (2 k - 1) (2 k + 1)^2)], {k, 20}] Table[Numerator[4^k Hypergeometric2F1[1, -k, 1/2 - k, 1/4]/((2 k)! (2 k - 1) (2 k + 1)^2)], {k, 20}]
-
PARI
a(n)={numerator(4^n*sum(j=0, n, binomial(2*j,j))/(binomial(2*n,n)*(2*n)!*(2*n-1)*(2*n+1)^2))} \\ Andrew Howroyd, Jul 07 2020
Formula
a(n) = numerator(1/(8 * Pi * (2*n)! * (2*n - 1)) * Integral_{w=0..2*Pi} Integral_{v=0..Pi} Integral_{u=0..Pi} (2 * cos(u) * cos(v) - sin(u) * sin(v) * cos(w))^(2 * n) * sin(u) * sin(v)).
a(n) = numerator(4^n * hypergeom([1, -n], [1/2 - n], 1/4)/((2 * n)! (2 * n - 1) (2 * n + 1)^2)).
a(n) = numerator(4^n*(Sum_{j=0..n} binomial(2*j,j))/(binomial(2*n,n)*(2*n)!*(2*n-1)*(2*n+1)^2)).